双相不锈钢的药界TIG焊接工艺:提高性能的研究

Q3 Materials Science
Dipali Pandya, Amarish Badgujar, Mohamed Rafik Noor Mohamed Qureshi, Nilesh D. Ghetiya
{"title":"双相不锈钢的药界TIG焊接工艺:提高性能的研究","authors":"Dipali Pandya, Amarish Badgujar, Mohamed Rafik Noor Mohamed Qureshi, Nilesh D. Ghetiya","doi":"10.1504/ijmatei.2023.133373","DOIUrl":null,"url":null,"abstract":"A new variant of activated tungsten inert gas (A-TIG) welding is flux-bounded tungsten inert gas (FB-TIG) welding. The present study explores the nature of flux gap and variation of flux as a single component over the geometry of weld bead in 2205 duplex stainless steel (DSS) FB-TIG weld joint. Significant improvement in penetration depth is observed at the flux gap at 2 mm with SiO2 flux, which is 193% higher than the TIG weld. Constriction of the arc is a predominant mechanism responsible for high penetration depth. Along with this, the article discusses the variation of welding current as a heat input over weld bead geometry, microstructure, and mechanical properties. The peak value of tensile strength of the FB-TIG weld is 10% higher than the TIG weld metal. However, the maximum microhardness of FB-TIG weld metal is 2% less than that of TIG weld metal.","PeriodicalId":14033,"journal":{"name":"International Journal of Materials Engineering Innovation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flux-bounded TIG welding process in duplex stainless steel: a performance enhancement study\",\"authors\":\"Dipali Pandya, Amarish Badgujar, Mohamed Rafik Noor Mohamed Qureshi, Nilesh D. Ghetiya\",\"doi\":\"10.1504/ijmatei.2023.133373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variant of activated tungsten inert gas (A-TIG) welding is flux-bounded tungsten inert gas (FB-TIG) welding. The present study explores the nature of flux gap and variation of flux as a single component over the geometry of weld bead in 2205 duplex stainless steel (DSS) FB-TIG weld joint. Significant improvement in penetration depth is observed at the flux gap at 2 mm with SiO2 flux, which is 193% higher than the TIG weld. Constriction of the arc is a predominant mechanism responsible for high penetration depth. Along with this, the article discusses the variation of welding current as a heat input over weld bead geometry, microstructure, and mechanical properties. The peak value of tensile strength of the FB-TIG weld is 10% higher than the TIG weld metal. However, the maximum microhardness of FB-TIG weld metal is 2% less than that of TIG weld metal.\",\"PeriodicalId\":14033,\"journal\":{\"name\":\"International Journal of Materials Engineering Innovation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Engineering Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmatei.2023.133373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Engineering Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmatei.2023.133373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

一种新型的活性钨惰性气体(A- tig)焊接是药界钨惰性气体(FB-TIG)焊接。本研究探讨了2205双相不锈钢(DSS) FB-TIG焊接接头中焊剂间隙的性质和作为单一成分的焊剂在焊缝几何形状上的变化。在2 mm焊剂间隙处,添加SiO2焊剂可显著改善焊深,比TIG焊深提高193%。弧的收缩是造成高穿透深度的主要机制。与此同时,本文还讨论了焊接电流作为热输入对焊缝几何形状、微观结构和机械性能的影响。FB-TIG焊缝的抗拉强度峰值比TIG焊缝金属高10%。然而,FB-TIG焊缝金属的最大显微硬度比TIG焊缝金属低2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flux-bounded TIG welding process in duplex stainless steel: a performance enhancement study
A new variant of activated tungsten inert gas (A-TIG) welding is flux-bounded tungsten inert gas (FB-TIG) welding. The present study explores the nature of flux gap and variation of flux as a single component over the geometry of weld bead in 2205 duplex stainless steel (DSS) FB-TIG weld joint. Significant improvement in penetration depth is observed at the flux gap at 2 mm with SiO2 flux, which is 193% higher than the TIG weld. Constriction of the arc is a predominant mechanism responsible for high penetration depth. Along with this, the article discusses the variation of welding current as a heat input over weld bead geometry, microstructure, and mechanical properties. The peak value of tensile strength of the FB-TIG weld is 10% higher than the TIG weld metal. However, the maximum microhardness of FB-TIG weld metal is 2% less than that of TIG weld metal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Materials Engineering Innovation
International Journal of Materials Engineering Innovation Materials Science-Materials Science (all)
CiteScore
1.70
自引率
0.00%
发文量
27
期刊介绍: IJMatEI is a multidisciplinary journal that will publish refereed high quality articles with special emphasis on research and development into recent advances in composites, ceramics, functionally graded materials, cellular materials and ecomaterials. IJMatEI fosters information exchange and discussion on all aspects of modern materials engineering, such as materials preparation and processing, relationships between structure (nano and micro) and properties (physical, chemical, mechanical, thermal, electrical and magnetic), as well as performance and technological applications for advanced industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信