离散波导的热扩散耦合机理及其应用

None Meng Ling-Zhi, None Yuan Li-Bo
{"title":"离散波导的热扩散耦合机理及其应用","authors":"None Meng Ling-Zhi, None Yuan Li-Bo","doi":"10.7498/aps.72.20230204","DOIUrl":null,"url":null,"abstract":"For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper investigates how the refractive index of discrete waveguides can be tuned by thermal diffusion to enhance the coupling between discrete waveguides. In this paper, the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers are constructed. The multicore fiber is heated with a hydrogen-oxygen flame for different times, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. Combined with multicore fiber and core-by-core inscribed fiber Bragg gratings technology, single-channel sensing measurement can be realized by thermal diffusion technology. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, artificial intelligence.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal diffusion coupling mechanism and its application of discrete waveguide\",\"authors\":\"None Meng Ling-Zhi, None Yuan Li-Bo\",\"doi\":\"10.7498/aps.72.20230204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper investigates how the refractive index of discrete waveguides can be tuned by thermal diffusion to enhance the coupling between discrete waveguides. In this paper, the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers are constructed. The multicore fiber is heated with a hydrogen-oxygen flame for different times, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. Combined with multicore fiber and core-by-core inscribed fiber Bragg gratings technology, single-channel sensing measurement can be realized by thermal diffusion technology. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, artificial intelligence.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20230204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于集成在光纤中的离散光学系统,各个波导的光场是相互耦合和相关的。本文研究了如何利用热扩散调节离散波导的折射率以增强离散波导之间的耦合。本文建立了离散波导的热扩散模型以及双芯和三芯光纤的热扩散耦合模型。用氢氧火焰对多芯光纤进行不同时间的加热,同时对光纤端面出射光场进行监测。然后,对热扩散多芯光纤的三维折射率测量结果验证了热扩散技术改变离散波导折射率进行耦合的可行性。热扩散技术可用于制造多芯光纤耦合器。结合多芯光纤和逐芯内嵌光纤Bragg光栅技术,利用热扩散技术实现单通道传感测量。利用热扩散改变离散波导折射率的方法具有高集成度、高稳定性和大批量制造的优点。对离散波导热扩散的研究可以提高多芯光纤传感系统的应用潜力,促进离散波导结构光纤在光通信、光传感、生物医学、人工智能等领域的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal diffusion coupling mechanism and its application of discrete waveguide
For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper investigates how the refractive index of discrete waveguides can be tuned by thermal diffusion to enhance the coupling between discrete waveguides. In this paper, the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers are constructed. The multicore fiber is heated with a hydrogen-oxygen flame for different times, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. Combined with multicore fiber and core-by-core inscribed fiber Bragg gratings technology, single-channel sensing measurement can be realized by thermal diffusion technology. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信