用主动磁轴承消除旋转机械中突然出现的不平衡现象

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović
{"title":"用主动磁轴承消除旋转机械中突然出现的不平衡现象","authors":"Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović","doi":"10.30765/er.2308","DOIUrl":null,"url":null,"abstract":"The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"95 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The annulling of the sudden appearance of an unbalance in rotary machines by using active magnetic bearings\",\"authors\":\"Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović\",\"doi\":\"10.30765/er.2308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.2308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.2308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁轴承的应用在过去的20年里变得越来越频繁,代表了旋转运动机器结构改进的一个重要方面。随着技术的进步,磁性轴承的应用数量正在增加。本文说明了磁力的作用是如何消除主动磁轴承支承转子突然出现的不平衡的负面影响的。这种情况在运行中可能会发生,因为转子部件断裂和脱落(如风扇叶片),这将导致转子系统的质量平衡突然改变,质量中心相对于转子几何中心的错位。本文建立了主动磁轴承刚性转子动态特性的数学模型。该模型是非线性的,有五个自由度,只能用数值方法求解。采用Newmark beta法和Newton-Raphson法求解非线性微分方程组。仿真结果表明,采用主动磁轴承消除旋转机械中突然不平衡现象的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The annulling of the sudden appearance of an unbalance in rotary machines by using active magnetic bearings
The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Review
Engineering Review ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
0.00%
发文量
8
期刊介绍: Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信