Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović
{"title":"用主动磁轴承消除旋转机械中突然出现的不平衡现象","authors":"Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović","doi":"10.30765/er.2308","DOIUrl":null,"url":null,"abstract":"The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The annulling of the sudden appearance of an unbalance in rotary machines by using active magnetic bearings\",\"authors\":\"Aleksandar Tomović, Milanko Damjanović, Radoslav Tomović, Janko Jovanović\",\"doi\":\"10.30765/er.2308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.\",\"PeriodicalId\":44022,\"journal\":{\"name\":\"Engineering Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30765/er.2308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/er.2308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The annulling of the sudden appearance of an unbalance in rotary machines by using active magnetic bearings
The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.