{"title":"在水平方面与顶点形式有关的指数和","authors":"Fei Hou","doi":"10.7169/facm/2079","DOIUrl":null,"url":null,"abstract":"Let $N$ be a square-free integer. Let $f\\in \\mathcal{B}^\\ast_k(N)$ (or $\\mathcal{B}_\\lambda^\\ast(N)$) be a primitive (either holomorphic or Maaß) cusp form of level $N$, with $\\lambda_f(n)$ denoting the $n$-th Hecke eigenvalue. In this paper, we explicitly determine the dependence on the level aspect for the sum \\[\\sum_{n\\le X}\\lambda_f(n) e{\\left(n^2\\alpha+n\\beta \\right)},\\] which is uniform in any $\\alpha,\\beta\\in \\R$ and $X\\ge 2$. In addition, we also investigate the analog at the prime arguments.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exponential sums related to cusp formsin the level aspect\",\"authors\":\"Fei Hou\",\"doi\":\"10.7169/facm/2079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $N$ be a square-free integer. Let $f\\\\in \\\\mathcal{B}^\\\\ast_k(N)$ (or $\\\\mathcal{B}_\\\\lambda^\\\\ast(N)$) be a primitive (either holomorphic or Maaß) cusp form of level $N$, with $\\\\lambda_f(n)$ denoting the $n$-th Hecke eigenvalue. In this paper, we explicitly determine the dependence on the level aspect for the sum \\\\[\\\\sum_{n\\\\le X}\\\\lambda_f(n) e{\\\\left(n^2\\\\alpha+n\\\\beta \\\\right)},\\\\] which is uniform in any $\\\\alpha,\\\\beta\\\\in \\\\R$ and $X\\\\ge 2$. In addition, we also investigate the analog at the prime arguments.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The exponential sums related to cusp formsin the level aspect
Let $N$ be a square-free integer. Let $f\in \mathcal{B}^\ast_k(N)$ (or $\mathcal{B}_\lambda^\ast(N)$) be a primitive (either holomorphic or Maaß) cusp form of level $N$, with $\lambda_f(n)$ denoting the $n$-th Hecke eigenvalue. In this paper, we explicitly determine the dependence on the level aspect for the sum \[\sum_{n\le X}\lambda_f(n) e{\left(n^2\alpha+n\beta \right)},\] which is uniform in any $\alpha,\beta\in \R$ and $X\ge 2$. In addition, we also investigate the analog at the prime arguments.