利用不同类型的交换相关泛函研究六方氮化硼的电子性质

Pub Date : 2023-01-01 DOI:10.56042/ijpap.v61i10.2805
{"title":"利用不同类型的交换相关泛函研究六方氮化硼的电子性质","authors":"","doi":"10.56042/ijpap.v61i10.2805","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) description of electronic structure and related properties offer significant accuracy with low cost. Unfortunately, most of these calculations based on LDA and GGA Exchange-Correlation (XC) functionals are underestimating the energy band gap. Hybrid functionals seem promising candidates for band gap values enhancement. Hexagonal Boron Nitride (h-BN) is one of the important members of the graphene-like two-dimensional honeycomb structure family which is of great importance both for science and technology. Experimentally, there is convincing evidence for an indirect wide bandgap of about 6 eV. We present in this work a systematic DFT study using different types of Exchange-Correlation (XC) functionals to find out their accuracy to estimate the h-BN band gap along with its band structure and density of states. We tested five types of different functionals to study the band structure and density of states of a single-layer h-BN. Small differences have been noticed regarding band structure and density of state details. Nevertheless, HSE03 deduced the band gap accurately within a 3.4% deviation from the experimental value compared with LDA which showed a 24.4% error.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT Study of Hexagonal Boron Nitride Electronic Properties Using Different Types of Exchange Correlation Functionals\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i10.2805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory (DFT) description of electronic structure and related properties offer significant accuracy with low cost. Unfortunately, most of these calculations based on LDA and GGA Exchange-Correlation (XC) functionals are underestimating the energy band gap. Hybrid functionals seem promising candidates for band gap values enhancement. Hexagonal Boron Nitride (h-BN) is one of the important members of the graphene-like two-dimensional honeycomb structure family which is of great importance both for science and technology. Experimentally, there is convincing evidence for an indirect wide bandgap of about 6 eV. We present in this work a systematic DFT study using different types of Exchange-Correlation (XC) functionals to find out their accuracy to estimate the h-BN band gap along with its band structure and density of states. We tested five types of different functionals to study the band structure and density of states of a single-layer h-BN. Small differences have been noticed regarding band structure and density of state details. Nevertheless, HSE03 deduced the band gap accurately within a 3.4% deviation from the experimental value compared with LDA which showed a 24.4% error.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i10.2805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i10.2805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)对电子结构及相关性质的描述具有较高的准确性和较低的成本。不幸的是,大多数基于LDA和GGA交换相关(XC)泛函的计算都低估了能带隙。混合函数似乎是带隙值增强的有希望的候选者。六方氮化硼(h-BN)是类石墨烯二维蜂窝结构家族的重要成员之一,具有重要的科学和技术意义。在实验中,有令人信服的证据表明存在约6 eV的间接宽带隙。本文采用不同类型的交换相关(XC)泛函进行了系统的DFT研究,以找出它们估计h-BN带隙及其带结构和态密度的准确性。为了研究单层h-BN的能带结构和态密度,我们测试了五种不同类型的官能团。在带的结构和态的密度方面已经注意到细微的差别。然而,与LDA相比,HSE03准确地推导出带隙,与实验值的偏差在3.4%以内,误差为24.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
DFT Study of Hexagonal Boron Nitride Electronic Properties Using Different Types of Exchange Correlation Functionals
Density functional theory (DFT) description of electronic structure and related properties offer significant accuracy with low cost. Unfortunately, most of these calculations based on LDA and GGA Exchange-Correlation (XC) functionals are underestimating the energy band gap. Hybrid functionals seem promising candidates for band gap values enhancement. Hexagonal Boron Nitride (h-BN) is one of the important members of the graphene-like two-dimensional honeycomb structure family which is of great importance both for science and technology. Experimentally, there is convincing evidence for an indirect wide bandgap of about 6 eV. We present in this work a systematic DFT study using different types of Exchange-Correlation (XC) functionals to find out their accuracy to estimate the h-BN band gap along with its band structure and density of states. We tested five types of different functionals to study the band structure and density of states of a single-layer h-BN. Small differences have been noticed regarding band structure and density of state details. Nevertheless, HSE03 deduced the band gap accurately within a 3.4% deviation from the experimental value compared with LDA which showed a 24.4% error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信