{"title":"4,4-二甲氧基-1,1-联苯(4- dmb)晶体结构的实验与理论表征","authors":"","doi":"10.56042/ijpap.v61i9.3099","DOIUrl":null,"url":null,"abstract":"4,4-dimethoxy-1,1-biphenyl has been synthesized and its chemical structure has been characterized by various spectroscopic techniques like FT-IR, 1H & 13C NMR, and SC-XRD methods. The structure reveals the existence of two C-H⋯π and a weak π…π interaction which are primarily responsible for the stability of the crystal packing. A comparison of the X-ray structure & its optimized data using DFT has been made. The frontier molecular orbital analysis (FMO) reveals an energy gap of 4.57 eV and the molecular electrostatic potential map shows the charge distribution in the molecule. The two-dimensional fingerprint maps as emanated from the Hirshfeld analysis demonstrates the presence of H…H, C…H and O…H interactions. The molecular docking analysis has also been performed with tyrosinase (3NQ1).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Theoretical Characterization of the Crystal Structure of 4,4-dimethoxy-1,1-biphenyl (4-DMB)\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i9.3099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"4,4-dimethoxy-1,1-biphenyl has been synthesized and its chemical structure has been characterized by various spectroscopic techniques like FT-IR, 1H & 13C NMR, and SC-XRD methods. The structure reveals the existence of two C-H⋯π and a weak π…π interaction which are primarily responsible for the stability of the crystal packing. A comparison of the X-ray structure & its optimized data using DFT has been made. The frontier molecular orbital analysis (FMO) reveals an energy gap of 4.57 eV and the molecular electrostatic potential map shows the charge distribution in the molecule. The two-dimensional fingerprint maps as emanated from the Hirshfeld analysis demonstrates the presence of H…H, C…H and O…H interactions. The molecular docking analysis has also been performed with tyrosinase (3NQ1).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i9.3099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i9.3099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Theoretical Characterization of the Crystal Structure of 4,4-dimethoxy-1,1-biphenyl (4-DMB)
4,4-dimethoxy-1,1-biphenyl has been synthesized and its chemical structure has been characterized by various spectroscopic techniques like FT-IR, 1H & 13C NMR, and SC-XRD methods. The structure reveals the existence of two C-H⋯π and a weak π…π interaction which are primarily responsible for the stability of the crystal packing. A comparison of the X-ray structure & its optimized data using DFT has been made. The frontier molecular orbital analysis (FMO) reveals an energy gap of 4.57 eV and the molecular electrostatic potential map shows the charge distribution in the molecule. The two-dimensional fingerprint maps as emanated from the Hirshfeld analysis demonstrates the presence of H…H, C…H and O…H interactions. The molecular docking analysis has also been performed with tyrosinase (3NQ1).