Haipeng Duan, Qin Chen, Xuan Wang, Depeng Cheng, Xin Chen, Xu Wu, Dongming Wang, Lianming Li
{"title":"一种采用65纳米CMOS的ku波段发射机前端,具有45 dbc的图像抑制比和43 dbc的LOFT抑制","authors":"Haipeng Duan, Qin Chen, Xuan Wang, Depeng Cheng, Xin Chen, Xu Wu, Dongming Wang, Lianming Li","doi":"10.1587/elex.20.20230226","DOIUrl":null,"url":null,"abstract":"This paper presents a fully integrated Ku-band transmitter front-end with high image rejection ratio (IRR), local oscillator feedthrough (LOFT) suppression, gain and output power for point-to-point (P2P) communication. To avoid the bulky off-chip image-rejection filter, the Hartley transmitter structure is employed, in which frequency plan is undertaken to improve the IRR and LOFT performance, and a two-stage polyphase filter (PPF) and an in/quadrature-phase (I/Q) Gilbert mixer are utilized to improve the IRR further. With the capacitive neutralization and transformer-based series power combining techniques, a two-stage power amplifier (PA) is used to obtain high gain and output power. In the LO buffer, a flexible phase inverting cascode structure is used to achieve reliable up-sideband operation, and the inductive peaking technique and cross-coupled transistor pair are employed to promote the LO swing. Fabricated in a 65-nm CMOS process, the proposed Ku-band transmitter occupies a chip area of 0.98 mm2, and consumes 304-mW power consumption from a 1.2-V supply voltage. With measurements, over 15.8-17.9-GHz radio frequency (RF) bandwidth, the transmitter achieves an IRR and LOFT suppression ratio of 45-55 and 43-52 dBc, respectively. Moreover, it exhibits a conversion gain of 28.5 dB, an output 1-dB compression point (OP1dB) of 13.3 dBm and a saturated output power (Psat) of 16 dBm.","PeriodicalId":50387,"journal":{"name":"Ieice Electronics Express","volume":"43 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ku-band transmitter front-end in 65-nm CMOS with >45-dBc image-rejection ratio and >43-dBc LOFT suppression\",\"authors\":\"Haipeng Duan, Qin Chen, Xuan Wang, Depeng Cheng, Xin Chen, Xu Wu, Dongming Wang, Lianming Li\",\"doi\":\"10.1587/elex.20.20230226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully integrated Ku-band transmitter front-end with high image rejection ratio (IRR), local oscillator feedthrough (LOFT) suppression, gain and output power for point-to-point (P2P) communication. To avoid the bulky off-chip image-rejection filter, the Hartley transmitter structure is employed, in which frequency plan is undertaken to improve the IRR and LOFT performance, and a two-stage polyphase filter (PPF) and an in/quadrature-phase (I/Q) Gilbert mixer are utilized to improve the IRR further. With the capacitive neutralization and transformer-based series power combining techniques, a two-stage power amplifier (PA) is used to obtain high gain and output power. In the LO buffer, a flexible phase inverting cascode structure is used to achieve reliable up-sideband operation, and the inductive peaking technique and cross-coupled transistor pair are employed to promote the LO swing. Fabricated in a 65-nm CMOS process, the proposed Ku-band transmitter occupies a chip area of 0.98 mm2, and consumes 304-mW power consumption from a 1.2-V supply voltage. With measurements, over 15.8-17.9-GHz radio frequency (RF) bandwidth, the transmitter achieves an IRR and LOFT suppression ratio of 45-55 and 43-52 dBc, respectively. Moreover, it exhibits a conversion gain of 28.5 dB, an output 1-dB compression point (OP1dB) of 13.3 dBm and a saturated output power (Psat) of 16 dBm.\",\"PeriodicalId\":50387,\"journal\":{\"name\":\"Ieice Electronics Express\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieice Electronics Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/elex.20.20230226\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Electronics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.20.20230226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Ku-band transmitter front-end in 65-nm CMOS with >45-dBc image-rejection ratio and >43-dBc LOFT suppression
This paper presents a fully integrated Ku-band transmitter front-end with high image rejection ratio (IRR), local oscillator feedthrough (LOFT) suppression, gain and output power for point-to-point (P2P) communication. To avoid the bulky off-chip image-rejection filter, the Hartley transmitter structure is employed, in which frequency plan is undertaken to improve the IRR and LOFT performance, and a two-stage polyphase filter (PPF) and an in/quadrature-phase (I/Q) Gilbert mixer are utilized to improve the IRR further. With the capacitive neutralization and transformer-based series power combining techniques, a two-stage power amplifier (PA) is used to obtain high gain and output power. In the LO buffer, a flexible phase inverting cascode structure is used to achieve reliable up-sideband operation, and the inductive peaking technique and cross-coupled transistor pair are employed to promote the LO swing. Fabricated in a 65-nm CMOS process, the proposed Ku-band transmitter occupies a chip area of 0.98 mm2, and consumes 304-mW power consumption from a 1.2-V supply voltage. With measurements, over 15.8-17.9-GHz radio frequency (RF) bandwidth, the transmitter achieves an IRR and LOFT suppression ratio of 45-55 and 43-52 dBc, respectively. Moreover, it exhibits a conversion gain of 28.5 dB, an output 1-dB compression point (OP1dB) of 13.3 dBm and a saturated output power (Psat) of 16 dBm.
期刊介绍:
An aim of ELEX is rapid publication of original, peer-reviewed short papers that treat the field of modern electronics and electrical engineering. The boundaries of acceptable fields are not strictly delimited and they are flexibly varied to reflect trends of the fields. The scope of ELEX has mainly been focused on device and circuit technologies. Current appropriate topics include:
- Integrated optoelectronics (lasers and optoelectronic devices, silicon photonics, planar lightwave circuits, polymer optical circuits, etc.)
- Optical hardware (fiber optics, microwave photonics, optical interconnects, photonic signal processing, photonic integration and modules, optical sensing, etc.)
- Electromagnetic theory
- Microwave and millimeter-wave devices, circuits, and modules
- THz devices, circuits and modules
- Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)
- Integrated circuits (memory, logic, analog, RF, sensor)
- Power devices and circuits
- Micro- or nano-electromechanical systems
- Circuits and modules for storage
- Superconducting electronics
- Energy harvesting devices, circuits and modules
- Circuits and modules for electronic displays
- Circuits and modules for electronic instrumentation
- Devices, circuits and modules for IoT and biomedical applications