{"title":"离散莫尔斯函数与流域","authors":"Gilles Bertrand, Nicolas Boutry, Laurent Najman","doi":"10.1007/s10851-023-01157-8","DOIUrl":null,"url":null,"abstract":"Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a pure $$(d-1)$$ -subcomplex that satisfies a drop-of-water principle. In this paper, we introduce Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined and can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, we prove that such a watershed is the cut of the unique minimum spanning forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Morse Functions and Watersheds\",\"authors\":\"Gilles Bertrand, Nicolas Boutry, Laurent Najman\",\"doi\":\"10.1007/s10851-023-01157-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a pure $$(d-1)$$ -subcomplex that satisfies a drop-of-water principle. In this paper, we introduce Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined and can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, we prove that such a watershed is the cut of the unique minimum spanning forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.\",\"PeriodicalId\":16196,\"journal\":{\"name\":\"Journal of Mathematical Imaging and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Imaging and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10851-023-01157-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10851-023-01157-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Any watershed, when defined on a stack on a normal pseudomanifold of dimension d, is a pure $$(d-1)$$ -subcomplex that satisfies a drop-of-water principle. In this paper, we introduce Morse stacks, a class of functions that are equivalent to discrete Morse functions. We show that the watershed of a Morse stack on a normal pseudomanifold is uniquely defined and can be obtained with a linear-time algorithm relying on a sequence of collapses. Last, we prove that such a watershed is the cut of the unique minimum spanning forest, rooted in the minima of the Morse stack, of the facet graph of the pseudomanifold.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.