马宁常数和模度

IF 2.5 1区 数学 Q1 MATHEMATICS
Kestutis Cesnavicius, Michael Neururer, Abhishek Saha
{"title":"马宁常数和模度","authors":"Kestutis Cesnavicius, Michael Neururer, Abhishek Saha","doi":"10.4171/jems/1367","DOIUrl":null,"url":null,"abstract":"The Manin constant $c$ of an elliptic curve $E$ over $\\mathbb{Q}$ is the nonzero integer that scales the differential $\\omega\\_f$ determined by the normalized newform $f$ associated to $E$ into the pullback of a Néron differential under a minimal parametrization $\\phi\\colon X\\_0(N)\\mathbb{Q} \\twoheadrightarrow E$. Manin conjectured that $c = \\pm 1$ for optimal parametrizations, and we prove that in general $c \\mid \\deg(\\phi)$ under a minor assumption at $2$ and $3$ that is not needed for cube-free $N$ or for parametrizations by $X\\_1(N)\\mathbb{Q}$. Since $c$ is supported at the additive reduction primes, which need not divide $\\deg(\\phi)$, this improves the status of the Manin conjecture for many $E$. Our core result that gives this divisibility is the containment $\\omega\\_f \\in H^0(X\\_0(N), \\Omega)$, which we establish by combining automorphic methods with techniques from arithmetic geometry; here the modular curve $X\\_0(N)$ is considered over $\\mathbb{Z}$ and $\\Omega$ is its relative dualizing sheaf over $\\mathbb{Z}$. We reduce this containment to $p$-adic bounds on denominators of the Fourier expansions of $f$ at all the cusps of $X\\_0(N)\\_\\mathbb{C}$ and then use the recent basic identity for the $p$-adic Whittaker newform to establish stronger bounds in the more general setup of newforms of weight $k$ on $X\\_0(N)$. To overcome obstacles at $2$ and $3$, we analyze nondihedral supercuspidal representations of $\\operatorname{GL}\\_2(\\mathbb{Q}2)$ and exhibit new cases in which $X\\_0(N)\\mathbb{Z}$ has rational singularities.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Manin constant and the modular degree\",\"authors\":\"Kestutis Cesnavicius, Michael Neururer, Abhishek Saha\",\"doi\":\"10.4171/jems/1367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Manin constant $c$ of an elliptic curve $E$ over $\\\\mathbb{Q}$ is the nonzero integer that scales the differential $\\\\omega\\\\_f$ determined by the normalized newform $f$ associated to $E$ into the pullback of a Néron differential under a minimal parametrization $\\\\phi\\\\colon X\\\\_0(N)\\\\mathbb{Q} \\\\twoheadrightarrow E$. Manin conjectured that $c = \\\\pm 1$ for optimal parametrizations, and we prove that in general $c \\\\mid \\\\deg(\\\\phi)$ under a minor assumption at $2$ and $3$ that is not needed for cube-free $N$ or for parametrizations by $X\\\\_1(N)\\\\mathbb{Q}$. Since $c$ is supported at the additive reduction primes, which need not divide $\\\\deg(\\\\phi)$, this improves the status of the Manin conjecture for many $E$. Our core result that gives this divisibility is the containment $\\\\omega\\\\_f \\\\in H^0(X\\\\_0(N), \\\\Omega)$, which we establish by combining automorphic methods with techniques from arithmetic geometry; here the modular curve $X\\\\_0(N)$ is considered over $\\\\mathbb{Z}$ and $\\\\Omega$ is its relative dualizing sheaf over $\\\\mathbb{Z}$. We reduce this containment to $p$-adic bounds on denominators of the Fourier expansions of $f$ at all the cusps of $X\\\\_0(N)\\\\_\\\\mathbb{C}$ and then use the recent basic identity for the $p$-adic Whittaker newform to establish stronger bounds in the more general setup of newforms of weight $k$ on $X\\\\_0(N)$. To overcome obstacles at $2$ and $3$, we analyze nondihedral supercuspidal representations of $\\\\operatorname{GL}\\\\_2(\\\\mathbb{Q}2)$ and exhibit new cases in which $X\\\\_0(N)\\\\mathbb{Z}$ has rational singularities.\",\"PeriodicalId\":50003,\"journal\":{\"name\":\"Journal of the European Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1367\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jems/1367","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

马宁常数 $c$ 椭圆曲线的 $E$ 结束 $\mathbb{Q}$ 非零整数是微分的倍数吗 $\omega\_f$ 由规范化的新形式决定 $f$ 与…有关 $E$ 在最小参数化下的nsamron微分的回调 $\phi\colon X\_0(N)\mathbb{Q} \twoheadrightarrow E$. 马宁是这样推测的 $c = \pm 1$ 对于最优参数化,我们一般证明了 $c \mid \deg(\phi)$ 在一个小小的假设下 $2$ 和 $3$ 这在无立方体的情况下是不需要的 $N$ 或者对于参数化 $X\_1(N)\mathbb{Q}$. 自从 $c$ 是否支持加性约化素数,哪一个不需要除 $\deg(\phi)$在许多人看来,这提高了马宁猜想的地位 $E$. 我们给出可整除性的核心结果是包容 $\omega\_f \in H^0(X\_0(N), \Omega)$,我们将自同构方法与算术几何技术相结合来建立;这里是模曲线 $X\_0(N)$ 被认为是结束了 $\mathbb{Z}$ 和 $\Omega$ 它的相对二元化轴结束了吗 $\mathbb{Z}$. 我们把这个容器减小到 $p$的傅里叶展开式的分母上的-进界 $f$ 在所有的尖端 $X\_0(N)\_\mathbb{C}$ 然后用最近的基本恒等式 $p$-adic Whittaker新形式在更一般的新形式权重设置中建立了更强的界限 $k$ on $X\_0(N)$. 克服…上的障碍 $2$ 和 $3$的非二面体超尖表示 $\operatorname{GL}\_2(\mathbb{Q}2)$ 并展示新的案例 $X\_0(N)\mathbb{Z}$ 有理性奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Manin constant and the modular degree
The Manin constant $c$ of an elliptic curve $E$ over $\mathbb{Q}$ is the nonzero integer that scales the differential $\omega\_f$ determined by the normalized newform $f$ associated to $E$ into the pullback of a Néron differential under a minimal parametrization $\phi\colon X\_0(N)\mathbb{Q} \twoheadrightarrow E$. Manin conjectured that $c = \pm 1$ for optimal parametrizations, and we prove that in general $c \mid \deg(\phi)$ under a minor assumption at $2$ and $3$ that is not needed for cube-free $N$ or for parametrizations by $X\_1(N)\mathbb{Q}$. Since $c$ is supported at the additive reduction primes, which need not divide $\deg(\phi)$, this improves the status of the Manin conjecture for many $E$. Our core result that gives this divisibility is the containment $\omega\_f \in H^0(X\_0(N), \Omega)$, which we establish by combining automorphic methods with techniques from arithmetic geometry; here the modular curve $X\_0(N)$ is considered over $\mathbb{Z}$ and $\Omega$ is its relative dualizing sheaf over $\mathbb{Z}$. We reduce this containment to $p$-adic bounds on denominators of the Fourier expansions of $f$ at all the cusps of $X\_0(N)\_\mathbb{C}$ and then use the recent basic identity for the $p$-adic Whittaker newform to establish stronger bounds in the more general setup of newforms of weight $k$ on $X\_0(N)$. To overcome obstacles at $2$ and $3$, we analyze nondihedral supercuspidal representations of $\operatorname{GL}\_2(\mathbb{Q}2)$ and exhibit new cases in which $X\_0(N)\mathbb{Z}$ has rational singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信