有限Larmor半径近似下碰撞Vlasov方程的多尺度数值格式

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Anaïs Crestetto, Nicolas Crouseilles, Damien Prel
{"title":"有限Larmor半径近似下碰撞Vlasov方程的多尺度数值格式","authors":"Anaïs Crestetto, Nicolas Crouseilles, Damien Prel","doi":"10.1137/22m1496839","DOIUrl":null,"url":null,"abstract":"This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"141 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Numerical Schemes for the Collisional Vlasov Equation in the Finite Larmor Radius Approximation Regime\",\"authors\":\"Anaïs Crestetto, Nicolas Crouseilles, Damien Prel\",\"doi\":\"10.1137/22m1496839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.\",\"PeriodicalId\":49791,\"journal\":{\"name\":\"Multiscale Modeling & Simulation\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling & Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1496839\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1496839","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了碰撞Vlasov方程的有限Larmor半径近似的多尺度数值格式的构造。继Bostan and Finot (common)的文件之后。一栏。数学。[j], 22(2020), 1950047],系统涉及两个不同的状态,一个高振荡状态和一个耗散状态,其渐近极限不交换。在这项工作中,我们考虑了碰撞Vlasov系统的单元内粒子离散化,使我们能够处理多尺度特征方程。然后构造并分析了不同的多尺度时间积分器。我们证明了这些格式在高振荡区和碰撞区的渐近性质。特别地,恢复了平均碰撞算子对修正平衡的渐近保持性质。数值实验说明了数值格式的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Numerical Schemes for the Collisional Vlasov Equation in the Finite Larmor Radius Approximation Regime
This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiscale Modeling & Simulation
Multiscale Modeling & Simulation 数学-数学跨学科应用
CiteScore
2.80
自引率
6.20%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods. By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信