{"title":"微波辅助声化学合成氧化锌纳米线的研究","authors":"Mohd Firdaus Malek","doi":"10.24191/jmeche.v20i3.23913","DOIUrl":null,"url":null,"abstract":"Zinc oxide nanowires (ZnO NWs) have been successfully synthesized via a hybrid microwave-assisted sonochemical technique (HMAST) using zinc acetate dehydrate as starting material. The optimized parameters were set at 12.5 mM solution concentration and a rapid deposition time of 60 minutes. The microwave power was varied from 100 to 800 Watts and the effect of microwave power on the morphological, structural, and optical properties ofthe ZnO NWs has also been studied. Results showed an aligned, uniformly distributed hexagonal wurtzite structure of ZnO NWs was produced, which were augmented at 600 W microwave power, having the smallest diameter size of 29.66 nm. The XRD graph showed that the ZnO NWs produced are highly crystalline, exhibiting the sharpest and narrowest intensity of (002) peaks and a crystallite size of 18.60 nm. The transmittance spectra obtained by UV-Vis would be 89.72%, having a sharp absorption edge, implying the lower particle size of ZnO as well as exhibiting high absorbance in the ultraviolet region, indicating good crystallinity. From the findings, it can be confirmed that the microwave-assisted method helped in improving the formation of higher quality ZnO NWs that can be befittingly applied in many devices such as photocatalysts and sensors due to their excellent electrochemical properties.","PeriodicalId":16332,"journal":{"name":"Journal of Mechanical Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesisation of Zinc Oxide Nanowires via Hybrid Microwave-Assisted Sonochemical Technique at Various Microwave Power\",\"authors\":\"Mohd Firdaus Malek\",\"doi\":\"10.24191/jmeche.v20i3.23913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc oxide nanowires (ZnO NWs) have been successfully synthesized via a hybrid microwave-assisted sonochemical technique (HMAST) using zinc acetate dehydrate as starting material. The optimized parameters were set at 12.5 mM solution concentration and a rapid deposition time of 60 minutes. The microwave power was varied from 100 to 800 Watts and the effect of microwave power on the morphological, structural, and optical properties ofthe ZnO NWs has also been studied. Results showed an aligned, uniformly distributed hexagonal wurtzite structure of ZnO NWs was produced, which were augmented at 600 W microwave power, having the smallest diameter size of 29.66 nm. The XRD graph showed that the ZnO NWs produced are highly crystalline, exhibiting the sharpest and narrowest intensity of (002) peaks and a crystallite size of 18.60 nm. The transmittance spectra obtained by UV-Vis would be 89.72%, having a sharp absorption edge, implying the lower particle size of ZnO as well as exhibiting high absorbance in the ultraviolet region, indicating good crystallinity. From the findings, it can be confirmed that the microwave-assisted method helped in improving the formation of higher quality ZnO NWs that can be befittingly applied in many devices such as photocatalysts and sensors due to their excellent electrochemical properties.\",\"PeriodicalId\":16332,\"journal\":{\"name\":\"Journal of Mechanical Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i3.23913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i3.23913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Synthesisation of Zinc Oxide Nanowires via Hybrid Microwave-Assisted Sonochemical Technique at Various Microwave Power
Zinc oxide nanowires (ZnO NWs) have been successfully synthesized via a hybrid microwave-assisted sonochemical technique (HMAST) using zinc acetate dehydrate as starting material. The optimized parameters were set at 12.5 mM solution concentration and a rapid deposition time of 60 minutes. The microwave power was varied from 100 to 800 Watts and the effect of microwave power on the morphological, structural, and optical properties ofthe ZnO NWs has also been studied. Results showed an aligned, uniformly distributed hexagonal wurtzite structure of ZnO NWs was produced, which were augmented at 600 W microwave power, having the smallest diameter size of 29.66 nm. The XRD graph showed that the ZnO NWs produced are highly crystalline, exhibiting the sharpest and narrowest intensity of (002) peaks and a crystallite size of 18.60 nm. The transmittance spectra obtained by UV-Vis would be 89.72%, having a sharp absorption edge, implying the lower particle size of ZnO as well as exhibiting high absorbance in the ultraviolet region, indicating good crystallinity. From the findings, it can be confirmed that the microwave-assisted method helped in improving the formation of higher quality ZnO NWs that can be befittingly applied in many devices such as photocatalysts and sensors due to their excellent electrochemical properties.
期刊介绍:
Journal of Mechanical Engineering (formerly known as Journal of Faculty of Mechanical Engineering) or JMechE, is an international journal which provides a forum for researchers and academicians worldwide to publish the research findings and the educational methods they are engaged in. This Journal acts as a link for the mechanical engineering community for rapid dissemination of their academic pursuits. The journal is published twice a year, in June and December, which discusses the progress of Mechanical Engineering advancement.