基于变压器的图神经网络电离层VTEC图预测

Ruirui Liu, Yiping Jiang
{"title":"基于变压器的图神经网络电离层VTEC图预测","authors":"Ruirui Liu, Yiping Jiang","doi":"10.33012/2023.19292","DOIUrl":null,"url":null,"abstract":"Accurate and timely prediction of Total Electron Content (TEC) in the ionosphere is of paramount importance for various applications such as GNSS positioning and navigation, communication systems, and space weather monitoring. While recent years have witnessed the application of various deep learning techniques to this task, these methods often treat vertical total electron content (VTEC) maps as either images or sequences, disregarding the inherent non-Euclidean (spherical) nature of VTEC maps. Addressing this limitation, our study offers a novel perspective by introducing graph structures to represent VTEC data. This paper presents a groundbreaking approach, GNNTrans, which amalgamates the strengths of graph convolutional networks and transformer architectures to predict TEC. GNNTrans adeptly captures the intricate spatial and temporal dependencies intrinsic to VTEC maps. Through an ablation study, the results demonstrate graph structures and Graph Neural Networks (GNN) are superior to conventional Convolutional Neural Network (CNN) methods in extracting non-Euclidean spatial information from VTEC maps, achieving root mean square errors (RMSE) of 2.58 and 2.66. Additionally, experiments demonstrate GNNTrans’s supremacy over the CODE one-day forecasting product across various dimensions, reducing the RMSE to 3.34 and 1.49 in 2014 and 2018 respectively, in contrast to C1P’s values of 8.74 and 6.41. GNNTrans exhibits remarkable performance in predicting TEC variations across diverse conditions, thus holding promise for heightened accuracy and reliability in ionospheric TEC forecasting.","PeriodicalId":498211,"journal":{"name":"Proceedings of the Satellite Division's International Technical Meeting","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionospheric VTEC Map Forecasting based on Graph Neural Network with Transformers\",\"authors\":\"Ruirui Liu, Yiping Jiang\",\"doi\":\"10.33012/2023.19292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and timely prediction of Total Electron Content (TEC) in the ionosphere is of paramount importance for various applications such as GNSS positioning and navigation, communication systems, and space weather monitoring. While recent years have witnessed the application of various deep learning techniques to this task, these methods often treat vertical total electron content (VTEC) maps as either images or sequences, disregarding the inherent non-Euclidean (spherical) nature of VTEC maps. Addressing this limitation, our study offers a novel perspective by introducing graph structures to represent VTEC data. This paper presents a groundbreaking approach, GNNTrans, which amalgamates the strengths of graph convolutional networks and transformer architectures to predict TEC. GNNTrans adeptly captures the intricate spatial and temporal dependencies intrinsic to VTEC maps. Through an ablation study, the results demonstrate graph structures and Graph Neural Networks (GNN) are superior to conventional Convolutional Neural Network (CNN) methods in extracting non-Euclidean spatial information from VTEC maps, achieving root mean square errors (RMSE) of 2.58 and 2.66. Additionally, experiments demonstrate GNNTrans’s supremacy over the CODE one-day forecasting product across various dimensions, reducing the RMSE to 3.34 and 1.49 in 2014 and 2018 respectively, in contrast to C1P’s values of 8.74 and 6.41. GNNTrans exhibits remarkable performance in predicting TEC variations across diverse conditions, thus holding promise for heightened accuracy and reliability in ionospheric TEC forecasting.\",\"PeriodicalId\":498211,\"journal\":{\"name\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/2023.19292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Satellite Division's International Technical Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.19292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确及时地预测电离层总电子含量(TEC)对于GNSS定位和导航、通信系统和空间天气监测等各种应用至关重要。虽然近年来各种深度学习技术已经应用于这项任务,但这些方法通常将垂直总电子含量(VTEC)地图视为图像或序列,而忽略了VTEC地图固有的非欧几里得(球形)性质。为了解决这一限制,我们的研究通过引入图结构来表示VTEC数据提供了一个新的视角。本文提出了一种突破性的方法,GNNTrans,它结合了图卷积网络和变压器架构的优势来预测TEC。GNNTrans熟练地捕捉了VTEC地图固有的复杂的空间和时间依赖关系。通过烧烧研究,结果表明图结构和图神经网络(GNN)在从VTEC地图中提取非欧氏空间信息方面优于传统的卷积神经网络(CNN)方法,均方根误差(RMSE)分别为2.58和2.66。此外,实验表明GNNTrans在各个维度上都优于CODE单日预测产品,2014年和2018年的RMSE分别降至3.34和1.49,而C1P的RMSE分别为8.74和6.41。GNNTrans在预测不同条件下的TEC变化方面表现出色,因此有望提高电离层TEC预测的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ionospheric VTEC Map Forecasting based on Graph Neural Network with Transformers
Accurate and timely prediction of Total Electron Content (TEC) in the ionosphere is of paramount importance for various applications such as GNSS positioning and navigation, communication systems, and space weather monitoring. While recent years have witnessed the application of various deep learning techniques to this task, these methods often treat vertical total electron content (VTEC) maps as either images or sequences, disregarding the inherent non-Euclidean (spherical) nature of VTEC maps. Addressing this limitation, our study offers a novel perspective by introducing graph structures to represent VTEC data. This paper presents a groundbreaking approach, GNNTrans, which amalgamates the strengths of graph convolutional networks and transformer architectures to predict TEC. GNNTrans adeptly captures the intricate spatial and temporal dependencies intrinsic to VTEC maps. Through an ablation study, the results demonstrate graph structures and Graph Neural Networks (GNN) are superior to conventional Convolutional Neural Network (CNN) methods in extracting non-Euclidean spatial information from VTEC maps, achieving root mean square errors (RMSE) of 2.58 and 2.66. Additionally, experiments demonstrate GNNTrans’s supremacy over the CODE one-day forecasting product across various dimensions, reducing the RMSE to 3.34 and 1.49 in 2014 and 2018 respectively, in contrast to C1P’s values of 8.74 and 6.41. GNNTrans exhibits remarkable performance in predicting TEC variations across diverse conditions, thus holding promise for heightened accuracy and reliability in ionospheric TEC forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信