用于原始GNSS观测干扰检测的混合自编码器

Karin Mascher, Stefan Laller, Philipp Berglez
{"title":"用于原始GNSS观测干扰检测的混合自编码器","authors":"Karin Mascher, Stefan Laller, Philipp Berglez","doi":"10.33012/2023.19369","DOIUrl":null,"url":null,"abstract":"Malfunctions or failures in Global Navigation Satellite System (GNSS) services can result in significant personal, material, and financial damages. By an early identification of anomalous behavior in GNSS signals, timely countermeasures can be taken. However, most of interference monitoring or mitigation techniques are only applicable with the use of high-end receivers and require a certain level of knowledge to be used effectively. This paper presents a GNSS interference monitoring approach employing machine learning methodologies that can be utilized by users of any expertise level and with any type of GNSS receiver capable of outputting raw GNSS observations. By leveraging simple signal-to-noise ratio (SNR) observations, different hybrid autoencoder models, including denoising or variational autoencoder combined with recurrent neural network (RNN) models, are trained and tested on real jamming and spoofing events. The developed monitoring system is represented by a “traffic-lights” system, indicating the severity or level of concern associated with each detected anomaly. The results contain a comparison between different RNN-based autoencoder implementations and have been tested on input data from high-end to low-end GNSS receivers. The analysis of the test set showed that there is a 95% probability of catching anomalies. Additionally, when applied to other geodetic receiver types like u-blox or Javad GNSS receivers, similar results were achieved. However, smartphone data is subject to some limitations. Notably, missed anomalies are primarily attributed to the low transmitting power from the jamming and spoofing devices, which poses challenges for detection.","PeriodicalId":498211,"journal":{"name":"Proceedings of the Satellite Division's International Technical Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Autoencoder for Interference Detection in Raw GNSS Observations\",\"authors\":\"Karin Mascher, Stefan Laller, Philipp Berglez\",\"doi\":\"10.33012/2023.19369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malfunctions or failures in Global Navigation Satellite System (GNSS) services can result in significant personal, material, and financial damages. By an early identification of anomalous behavior in GNSS signals, timely countermeasures can be taken. However, most of interference monitoring or mitigation techniques are only applicable with the use of high-end receivers and require a certain level of knowledge to be used effectively. This paper presents a GNSS interference monitoring approach employing machine learning methodologies that can be utilized by users of any expertise level and with any type of GNSS receiver capable of outputting raw GNSS observations. By leveraging simple signal-to-noise ratio (SNR) observations, different hybrid autoencoder models, including denoising or variational autoencoder combined with recurrent neural network (RNN) models, are trained and tested on real jamming and spoofing events. The developed monitoring system is represented by a “traffic-lights” system, indicating the severity or level of concern associated with each detected anomaly. The results contain a comparison between different RNN-based autoencoder implementations and have been tested on input data from high-end to low-end GNSS receivers. The analysis of the test set showed that there is a 95% probability of catching anomalies. Additionally, when applied to other geodetic receiver types like u-blox or Javad GNSS receivers, similar results were achieved. However, smartphone data is subject to some limitations. Notably, missed anomalies are primarily attributed to the low transmitting power from the jamming and spoofing devices, which poses challenges for detection.\",\"PeriodicalId\":498211,\"journal\":{\"name\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/2023.19369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Satellite Division's International Technical Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.19369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统(GNSS)服务的故障或失败可能导致重大的人身、物质和经济损失。通过早期识别GNSS信号中的异常行为,可以及时采取对策。然而,大多数干扰监测或缓解技术只适用于使用高端接收器,需要一定程度的知识才能有效使用。本文提出了一种采用机器学习方法的GNSS干扰监测方法,可用于任何专业水平的用户和能够输出原始GNSS观测的任何类型的GNSS接收器。通过利用简单的信噪比(SNR)观察,不同的混合自编码器模型,包括降噪或变分自编码器与循环神经网络(RNN)模型相结合,在实际干扰和欺骗事件中进行训练和测试。开发的监测系统由“红绿灯”系统表示,指示与每个检测到的异常相关的严重程度或关注级别。结果包含了不同的基于rnn的自动编码器实现之间的比较,并在高端和低端GNSS接收机的输入数据上进行了测试。对测试集的分析表明,捕获异常的概率为95%。此外,当应用于其他大地测量接收器类型(如u-blox或Javad GNSS接收器)时,也获得了类似的结果。然而,智能手机数据受到一些限制。值得注意的是,异常的遗漏主要是由于干扰和欺骗设备的低发射功率,这给检测带来了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Autoencoder for Interference Detection in Raw GNSS Observations
Malfunctions or failures in Global Navigation Satellite System (GNSS) services can result in significant personal, material, and financial damages. By an early identification of anomalous behavior in GNSS signals, timely countermeasures can be taken. However, most of interference monitoring or mitigation techniques are only applicable with the use of high-end receivers and require a certain level of knowledge to be used effectively. This paper presents a GNSS interference monitoring approach employing machine learning methodologies that can be utilized by users of any expertise level and with any type of GNSS receiver capable of outputting raw GNSS observations. By leveraging simple signal-to-noise ratio (SNR) observations, different hybrid autoencoder models, including denoising or variational autoencoder combined with recurrent neural network (RNN) models, are trained and tested on real jamming and spoofing events. The developed monitoring system is represented by a “traffic-lights” system, indicating the severity or level of concern associated with each detected anomaly. The results contain a comparison between different RNN-based autoencoder implementations and have been tested on input data from high-end to low-end GNSS receivers. The analysis of the test set showed that there is a 95% probability of catching anomalies. Additionally, when applied to other geodetic receiver types like u-blox or Javad GNSS receivers, similar results were achieved. However, smartphone data is subject to some limitations. Notably, missed anomalies are primarily attributed to the low transmitting power from the jamming and spoofing devices, which poses challenges for detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信