利用非合作LEO卫星的机会信号进行群导航

Dawson Beatty, Mark L. Psiaki
{"title":"利用非合作LEO卫星的机会信号进行群导航","authors":"Dawson Beatty, Mark L. Psiaki","doi":"10.33012/2023.19468","DOIUrl":null,"url":null,"abstract":"Methods have been developed and simulation-tested to perform swarm navigation using signals of opportunity from noncooperating Low-Earth-Orbit (LEO) satellites and cross-links between the swarm elements. This work seeks to exploit swarm capabilities in order to refine coarse initial estimates of the true orbits of the LEO satellites and thereby achieve accurate swarm navigation. The swarm consists of multiple quadrotor aircraft that can measure carrier Doppler shift from LEO satellites along with pseudorange between swarm members. Each swarm component carries an altimeter and a magnetometer too. A centralized Kalman filter estimates all swarm component states and all satellite states. Better characterization of Two-Line Element (TLE) uncertainties is important to such a system. Having better initial ephemerides for the satellites, as are available for Starlink satellites, is even more important. Achievable swarm position accuracy starting from TLEs is about 100 meters, but it improves to single-digit meters when using precise Starlink ephemerides. This work also presents a leapfrogging method in which successive members of a swarm of vehicles land and act as inertial reference stations. This not only significantly reduces the uncertainty bounds, but also allows the navigation algorithm to perform well even in the presence of strong wind, which is time-correlated (unbeknownst to the filter).","PeriodicalId":498211,"journal":{"name":"Proceedings of the Satellite Division's International Technical Meeting","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swarm Navigation Using Signals of Opportunity from Uncooperative LEO Satellites\",\"authors\":\"Dawson Beatty, Mark L. Psiaki\",\"doi\":\"10.33012/2023.19468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods have been developed and simulation-tested to perform swarm navigation using signals of opportunity from noncooperating Low-Earth-Orbit (LEO) satellites and cross-links between the swarm elements. This work seeks to exploit swarm capabilities in order to refine coarse initial estimates of the true orbits of the LEO satellites and thereby achieve accurate swarm navigation. The swarm consists of multiple quadrotor aircraft that can measure carrier Doppler shift from LEO satellites along with pseudorange between swarm members. Each swarm component carries an altimeter and a magnetometer too. A centralized Kalman filter estimates all swarm component states and all satellite states. Better characterization of Two-Line Element (TLE) uncertainties is important to such a system. Having better initial ephemerides for the satellites, as are available for Starlink satellites, is even more important. Achievable swarm position accuracy starting from TLEs is about 100 meters, but it improves to single-digit meters when using precise Starlink ephemerides. This work also presents a leapfrogging method in which successive members of a swarm of vehicles land and act as inertial reference stations. This not only significantly reduces the uncertainty bounds, but also allows the navigation algorithm to perform well even in the presence of strong wind, which is time-correlated (unbeknownst to the filter).\",\"PeriodicalId\":498211,\"journal\":{\"name\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Satellite Division's International Technical Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/2023.19468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Satellite Division's International Technical Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.19468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用来自非合作低地球轨道(LEO)卫星的机会信号和群元之间的交联进行群导航的方法已经开发并进行了仿真测试。这项工作旨在利用群体能力,以改进对低轨道卫星真实轨道的粗略初始估计,从而实现精确的群体导航。该群由多架四旋翼飞行器组成,可以测量低轨道卫星的载波多普勒频移以及群成员之间的伪距。每个蜂群组件都携带一个高度计和一个磁力计。集中式卡尔曼滤波器估计所有的群分量状态和所有的卫星状态。更好地表征双线元(TLE)不确定度对这样的系统是重要的。为卫星提供更好的初始星历表,就像星链卫星所能提供的那样,更为重要。从TLEs开始,可实现的群定位精度约为100米,但使用精确的星链星历时,可提高到个位数米。这项工作还提出了一种跨越式方法,其中一群车辆的连续成员着陆并充当惯性参考站。这不仅大大降低了不确定性界限,而且使导航算法即使在强风存在的情况下也能表现良好,强风是时间相关的(滤波器不知道)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm Navigation Using Signals of Opportunity from Uncooperative LEO Satellites
Methods have been developed and simulation-tested to perform swarm navigation using signals of opportunity from noncooperating Low-Earth-Orbit (LEO) satellites and cross-links between the swarm elements. This work seeks to exploit swarm capabilities in order to refine coarse initial estimates of the true orbits of the LEO satellites and thereby achieve accurate swarm navigation. The swarm consists of multiple quadrotor aircraft that can measure carrier Doppler shift from LEO satellites along with pseudorange between swarm members. Each swarm component carries an altimeter and a magnetometer too. A centralized Kalman filter estimates all swarm component states and all satellite states. Better characterization of Two-Line Element (TLE) uncertainties is important to such a system. Having better initial ephemerides for the satellites, as are available for Starlink satellites, is even more important. Achievable swarm position accuracy starting from TLEs is about 100 meters, but it improves to single-digit meters when using precise Starlink ephemerides. This work also presents a leapfrogging method in which successive members of a swarm of vehicles land and act as inertial reference stations. This not only significantly reduces the uncertainty bounds, but also allows the navigation algorithm to perform well even in the presence of strong wind, which is time-correlated (unbeknownst to the filter).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信