{"title":"浮石压实桩群提高软土承载力、弹性模量及路基反力模量","authors":"Hari Gopinadhanpillai, Balu Elias George","doi":"10.1080/19386362.2023.2264056","DOIUrl":null,"url":null,"abstract":"ABSTRACTObservations of Plate Load Tests conducted on 12 locations in the coastal belt of central Kerala, India, to investigate the performance of soft soil improved by Floating Stone Compaction Pile (FSCP) groups are presented in this paper. The soil in the sites chosen was predominantly cohesive with low shear strength. FSCPs 100mm in diameter spaced at 300mm center-to-center, and constructed using 6 mm broken stones were installed to a depth of 5.0 m. The improvement in bearing capacity, Elastic Modulus, and Modulus of Subgrade reaction of the soil were evaluated after 6 months. From the results, it was seen that an average increase of 85% in modulus of subgrade reaction, 52% for bearing capacity, and 90% for elastic modulus was gained due to the installation of FSCPs. The additional cost involved for the installation of FSCPs is only around 2% of the total cost for the construction of the structure, proving the method to be a cost-effective option.KEYWORDS: Ground improvementFloating Stone Compaction Pile (FSCP)plate load testcohesive soil AcknowledgmentsThe support by funding from Cochin Geotechnical Laboratory, India, National Institute of Technology, Calicut Kerala, and the facilities provided at the construction sites are acknowledgedDisclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementSome or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.","PeriodicalId":47238,"journal":{"name":"International Journal of Geotechnical Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing capacity, elastic modulus, and modulus of subgrade reaction of soft soil improved by floating stone compaction pile group\",\"authors\":\"Hari Gopinadhanpillai, Balu Elias George\",\"doi\":\"10.1080/19386362.2023.2264056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTObservations of Plate Load Tests conducted on 12 locations in the coastal belt of central Kerala, India, to investigate the performance of soft soil improved by Floating Stone Compaction Pile (FSCP) groups are presented in this paper. The soil in the sites chosen was predominantly cohesive with low shear strength. FSCPs 100mm in diameter spaced at 300mm center-to-center, and constructed using 6 mm broken stones were installed to a depth of 5.0 m. The improvement in bearing capacity, Elastic Modulus, and Modulus of Subgrade reaction of the soil were evaluated after 6 months. From the results, it was seen that an average increase of 85% in modulus of subgrade reaction, 52% for bearing capacity, and 90% for elastic modulus was gained due to the installation of FSCPs. The additional cost involved for the installation of FSCPs is only around 2% of the total cost for the construction of the structure, proving the method to be a cost-effective option.KEYWORDS: Ground improvementFloating Stone Compaction Pile (FSCP)plate load testcohesive soil AcknowledgmentsThe support by funding from Cochin Geotechnical Laboratory, India, National Institute of Technology, Calicut Kerala, and the facilities provided at the construction sites are acknowledgedDisclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementSome or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.\",\"PeriodicalId\":47238,\"journal\":{\"name\":\"International Journal of Geotechnical Engineering\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19386362.2023.2264056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19386362.2023.2264056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Bearing capacity, elastic modulus, and modulus of subgrade reaction of soft soil improved by floating stone compaction pile group
ABSTRACTObservations of Plate Load Tests conducted on 12 locations in the coastal belt of central Kerala, India, to investigate the performance of soft soil improved by Floating Stone Compaction Pile (FSCP) groups are presented in this paper. The soil in the sites chosen was predominantly cohesive with low shear strength. FSCPs 100mm in diameter spaced at 300mm center-to-center, and constructed using 6 mm broken stones were installed to a depth of 5.0 m. The improvement in bearing capacity, Elastic Modulus, and Modulus of Subgrade reaction of the soil were evaluated after 6 months. From the results, it was seen that an average increase of 85% in modulus of subgrade reaction, 52% for bearing capacity, and 90% for elastic modulus was gained due to the installation of FSCPs. The additional cost involved for the installation of FSCPs is only around 2% of the total cost for the construction of the structure, proving the method to be a cost-effective option.KEYWORDS: Ground improvementFloating Stone Compaction Pile (FSCP)plate load testcohesive soil AcknowledgmentsThe support by funding from Cochin Geotechnical Laboratory, India, National Institute of Technology, Calicut Kerala, and the facilities provided at the construction sites are acknowledgedDisclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementSome or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.