{"title":"有限生成的自由群和面群的有限可解格","authors":"Andrei Jaikin-Zapirain","doi":"10.1007/s40687-023-00408-9","DOIUrl":null,"url":null,"abstract":"Abstract Let $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> be the pseudovariety $${\\mathcal {F}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> of all finite groups or the pseudovariety $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> of all finite solvable groups and let $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> be either a finitely generated free group or a surface group. The $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> -genus of $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> , denoted by $${\\mathcal {G}}_{{\\mathcal {C}}}(\\Gamma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , consists of the isomorphism classes of finitely generated residually- $$\\mathcal C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> groups G having the same quotients in $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> as $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> . We show that the groups from $${\\mathcal {G}}_{{\\mathcal {C}}}(\\Gamma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are residually- p for all primes p . This answers a question of Gilbert Baumslag and shows that the groups in the genus are residually finite rationally solvable groups. This leads to a positive solution of particular case of a question of Alexander Grothendieck: if F is a free group, G is a finitely generated residually- $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> group and $$u:F\\rightarrow G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mo>→</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is a homomorphism such that the induced map of pro- $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> completions $$u_{\\widehat{{\\mathcal {C}}}} : F_{\\widehat{{\\mathcal {C}}}}\\rightarrow G_{\\widehat{{\\mathcal {C}}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>→</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> </mml:mrow> </mml:math> is an isomorphism, then u is an isomorphism.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The finite and solvable genus of finitely generated free and surface groups\",\"authors\":\"Andrei Jaikin-Zapirain\",\"doi\":\"10.1007/s40687-023-00408-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $${\\\\mathcal {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> be the pseudovariety $${\\\\mathcal {F}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> of all finite groups or the pseudovariety $${\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> of all finite solvable groups and let $$\\\\Gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Γ</mml:mi> </mml:math> be either a finitely generated free group or a surface group. The $${\\\\mathcal {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> -genus of $$\\\\Gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Γ</mml:mi> </mml:math> , denoted by $${\\\\mathcal {G}}_{{\\\\mathcal {C}}}(\\\\Gamma )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , consists of the isomorphism classes of finitely generated residually- $$\\\\mathcal C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> groups G having the same quotients in $${\\\\mathcal {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> as $$\\\\Gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Γ</mml:mi> </mml:math> . We show that the groups from $${\\\\mathcal {G}}_{{\\\\mathcal {C}}}(\\\\Gamma )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are residually- p for all primes p . This answers a question of Gilbert Baumslag and shows that the groups in the genus are residually finite rationally solvable groups. This leads to a positive solution of particular case of a question of Alexander Grothendieck: if F is a free group, G is a finitely generated residually- $${\\\\mathcal {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> group and $$u:F\\\\rightarrow G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mo>→</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is a homomorphism such that the induced map of pro- $${\\\\mathcal {C}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> completions $$u_{\\\\widehat{{\\\\mathcal {C}}}} : F_{\\\\widehat{{\\\\mathcal {C}}}}\\\\rightarrow G_{\\\\widehat{{\\\\mathcal {C}}}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>→</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> </mml:mrow> </mml:math> is an isomorphism, then u is an isomorphism.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-023-00408-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40687-023-00408-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
抽象Let $${\mathcal {C}}$$ C是伪变种 $${\mathcal {F}}$$ 所有有限群的F或伪簇 $${\mathcal {S}}$$ 所有有限可解群的S,让 $$\Gamma $$ Γ要么是有限生成的自由群,要么是曲面群。The $${\mathcal {C}}$$ 的C属 $$\Gamma $$ Γ,用表示 $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ gc (Γ),由有限生成残差的同构类组成 $$\mathcal C$$ C组G有相同的商 $${\mathcal {C}}$$ 选C。 $$\Gamma $$ Γ。我们展示了来自 $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ G C (Γ)对所有素数p都是残差p。这回答了Gilbert Baumslag的一个问题,并证明了属中的群是剩余有限合理可解群。这就得到了Alexander Grothendieck问题的一个特殊情况的正解:如果F是一个自由群,则G是一个有限生成的残差 $${\mathcal {C}}$$ C组和 $$u:F\rightarrow G$$ u: F→G是一个同态,使得pro-的诱导映射 $${\mathcal {C}}$$ C完井 $$u_{\widehat{{\mathcal {C}}}} : F_{\widehat{{\mathcal {C}}}}\rightarrow G_{\widehat{{\mathcal {C}}}}$$ u C ^: F C ^→G C ^是同构的,那么u也是同构的。
The finite and solvable genus of finitely generated free and surface groups
Abstract Let $${\mathcal {C}}$$ C be the pseudovariety $${\mathcal {F}}$$ F of all finite groups or the pseudovariety $${\mathcal {S}}$$ S of all finite solvable groups and let $$\Gamma $$ Γ be either a finitely generated free group or a surface group. The $${\mathcal {C}}$$ C -genus of $$\Gamma $$ Γ , denoted by $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ GC(Γ) , consists of the isomorphism classes of finitely generated residually- $$\mathcal C$$ C groups G having the same quotients in $${\mathcal {C}}$$ C as $$\Gamma $$ Γ . We show that the groups from $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ GC(Γ) are residually- p for all primes p . This answers a question of Gilbert Baumslag and shows that the groups in the genus are residually finite rationally solvable groups. This leads to a positive solution of particular case of a question of Alexander Grothendieck: if F is a free group, G is a finitely generated residually- $${\mathcal {C}}$$ C group and $$u:F\rightarrow G$$ u:F→G is a homomorphism such that the induced map of pro- $${\mathcal {C}}$$ C completions $$u_{\widehat{{\mathcal {C}}}} : F_{\widehat{{\mathcal {C}}}}\rightarrow G_{\widehat{{\mathcal {C}}}}$$ uC^:FC^→GC^ is an isomorphism, then u is an isomorphism.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.