使用模型置信度集比较COVID-19大流行期间得分驱动的股票-黄金投资组合

IF 0.7 4区 经济学 Q3 ECONOMICS
Astrid Ayala, Szabolcs Blazsek, Adrian Licht
{"title":"使用模型置信度集比较COVID-19大流行期间得分驱动的股票-黄金投资组合","authors":"Astrid Ayala, Szabolcs Blazsek, Adrian Licht","doi":"10.1515/snde-2022-0107","DOIUrl":null,"url":null,"abstract":"Abstract Gold may have a hedge, safe haven, or diversifier property when added to stock portfolios. Motivated by the favorable statistical properties and out-of-sample performance of score-driven models, we investigate for equity-gold portfolios whether score-driven mean, volatility, and copula models can improve the performances of DCC (dynamic conditional correlation) portfolios, the naïve portfolio strategy, and the Standard & Poor’s 500 (S&P 500) index. We consider 2880 score-driven portfolio strategies. We use score-driven Clayton, rotated Clayton, Frank, Gaussian, Gumbel, rotated Gumbel, Plackett, and Student’s t copulas. We use several classical and score-driven models of marginal distribution. We use weekly, monthly, quarterly, semi-annual, and annual updates of portfolio weights. We use minimum-variance, maximum Sharpe ratio, and maximum utility function strategies. We use rolling data-windows for portfolio optimization for the COVID-19 investment period of February 2020 to September 2021. We classify competing portfolios by using a new robust multi-step model confidence set (MCS) test approach and provide evidence of the superiority of score-driven portfolios.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"82 4","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets\",\"authors\":\"Astrid Ayala, Szabolcs Blazsek, Adrian Licht\",\"doi\":\"10.1515/snde-2022-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gold may have a hedge, safe haven, or diversifier property when added to stock portfolios. Motivated by the favorable statistical properties and out-of-sample performance of score-driven models, we investigate for equity-gold portfolios whether score-driven mean, volatility, and copula models can improve the performances of DCC (dynamic conditional correlation) portfolios, the naïve portfolio strategy, and the Standard & Poor’s 500 (S&P 500) index. We consider 2880 score-driven portfolio strategies. We use score-driven Clayton, rotated Clayton, Frank, Gaussian, Gumbel, rotated Gumbel, Plackett, and Student’s t copulas. We use several classical and score-driven models of marginal distribution. We use weekly, monthly, quarterly, semi-annual, and annual updates of portfolio weights. We use minimum-variance, maximum Sharpe ratio, and maximum utility function strategies. We use rolling data-windows for portfolio optimization for the COVID-19 investment period of February 2020 to September 2021. We classify competing portfolios by using a new robust multi-step model confidence set (MCS) test approach and provide evidence of the superiority of score-driven portfolios.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"82 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0107\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0107","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

当加入股票投资组合时,黄金可能具有对冲、避险或分散的属性。受分数驱动模型良好的统计特性和样本外性能的激励,我们研究了分数驱动的均值、波动率和copula模型是否可以改善DCC(动态条件相关)投资组合、naïve投资组合策略和标准&标准普尔500指数。我们考虑了2880种得分驱动的投资组合策略。我们使用分数驱动的Clayton、旋转的Clayton、Frank、Gaussian、Gumbel、旋转的Gumbel、Plackett和Student’s t copula。我们使用了几种经典的和分数驱动的边际分布模型。我们使用每周、每月、每季度、每半年和每年更新的投资组合权重。我们使用最小方差、最大夏普比率和最大效用函数策略。我们使用滚动数据窗口对2020年2月至2021年9月的COVID-19投资期进行投资组合优化。我们使用一种新的稳健多步模型置信集(MCS)检验方法对竞争组合进行分类,并提供了分数驱动组合的优越性的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
Abstract Gold may have a hedge, safe haven, or diversifier property when added to stock portfolios. Motivated by the favorable statistical properties and out-of-sample performance of score-driven models, we investigate for equity-gold portfolios whether score-driven mean, volatility, and copula models can improve the performances of DCC (dynamic conditional correlation) portfolios, the naïve portfolio strategy, and the Standard & Poor’s 500 (S&P 500) index. We consider 2880 score-driven portfolio strategies. We use score-driven Clayton, rotated Clayton, Frank, Gaussian, Gumbel, rotated Gumbel, Plackett, and Student’s t copulas. We use several classical and score-driven models of marginal distribution. We use weekly, monthly, quarterly, semi-annual, and annual updates of portfolio weights. We use minimum-variance, maximum Sharpe ratio, and maximum utility function strategies. We use rolling data-windows for portfolio optimization for the COVID-19 investment period of February 2020 to September 2021. We classify competing portfolios by using a new robust multi-step model confidence set (MCS) test approach and provide evidence of the superiority of score-driven portfolios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信