传热不可逆性最大化

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Ahmad Fakheri
{"title":"传热不可逆性最大化","authors":"Ahmad Fakheri","doi":"10.1115/1.4063990","DOIUrl":null,"url":null,"abstract":"Abstract The function of a heat exchanger is to transfer heat. In this paper, a 2nd law-based hypothesis is advanced that the entropy generated as a result of heat transfer alone, termed productive entropy, is the desired irreversibility and should be maximized while the entropy generated (irreversibilities) by other factors like friction and mixing that do not contribute to this function should be minimized or eliminated to reduce the needed heat transfer area. The hypothesis is proven mathematically for heat transfer between two fluids in a heat exchanger and between one hot and two cold fluids in a network of up to four heat exchangers. There currently are two approaches for minimizing the total area (minimum initial cost) of a heat exchanger network (HEN). One uses some empirically based best practices that are generally rooted in the second law, and the other uses optimization algorithms. This paper provides a third approach for HEN optimization, outlining a systematic approach to minimize the area, based on the maximization of productive entropy. The approach identifies the global minimum area for networks with any number of hot and cold streams. It constitutes another method for HEN optimization and an improvement over the existing methods that provide approximate solutions. The methodology is applied to two test cases, and it is shown that this approach improves on the results obtained using the traditional approaches. The approach can be applied to networks using any type of heat exchanger or a combination of different types of heat exchangers.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"58 2","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximization of the Heat Transfer Irreversibility\",\"authors\":\"Ahmad Fakheri\",\"doi\":\"10.1115/1.4063990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The function of a heat exchanger is to transfer heat. In this paper, a 2nd law-based hypothesis is advanced that the entropy generated as a result of heat transfer alone, termed productive entropy, is the desired irreversibility and should be maximized while the entropy generated (irreversibilities) by other factors like friction and mixing that do not contribute to this function should be minimized or eliminated to reduce the needed heat transfer area. The hypothesis is proven mathematically for heat transfer between two fluids in a heat exchanger and between one hot and two cold fluids in a network of up to four heat exchangers. There currently are two approaches for minimizing the total area (minimum initial cost) of a heat exchanger network (HEN). One uses some empirically based best practices that are generally rooted in the second law, and the other uses optimization algorithms. This paper provides a third approach for HEN optimization, outlining a systematic approach to minimize the area, based on the maximization of productive entropy. The approach identifies the global minimum area for networks with any number of hot and cold streams. It constitutes another method for HEN optimization and an improvement over the existing methods that provide approximate solutions. The methodology is applied to two test cases, and it is shown that this approach improves on the results obtained using the traditional approaches. The approach can be applied to networks using any type of heat exchanger or a combination of different types of heat exchangers.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\"58 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063990\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063990","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

换热器的作用是传递热量。在本文中,提出了基于第二定律的假设,即仅由传热产生的熵,称为生产熵,是所需的不可逆性,应最大化,而由其他因素(如摩擦和混合)产生的熵(不可逆性)不有助于该函数应最小化或消除,以减少所需的传热面积。对于换热器中两种流体之间以及多达四个换热器网络中一种热流体和两种冷流体之间的传热,该假设在数学上得到了证明。目前有两种最小化热交换器网络(HEN)总面积(最小初始成本)的方法。一个使用一些基于经验的最佳实践,这些实践通常植根于第二定律,另一个使用优化算法。本文提供了HEN优化的第三种方法,概述了一种基于生产熵最大化的最小化面积的系统方法。该方法确定了具有任意数量的冷热流的网络的全球最小区域。它构成了HEN优化的另一种方法,并且是对提供近似解的现有方法的改进。将该方法应用于两个测试用例,结果表明,该方法比传统方法得到的结果有改进。该方法可应用于使用任何类型热交换器或不同类型热交换器的组合的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of the Heat Transfer Irreversibility
Abstract The function of a heat exchanger is to transfer heat. In this paper, a 2nd law-based hypothesis is advanced that the entropy generated as a result of heat transfer alone, termed productive entropy, is the desired irreversibility and should be maximized while the entropy generated (irreversibilities) by other factors like friction and mixing that do not contribute to this function should be minimized or eliminated to reduce the needed heat transfer area. The hypothesis is proven mathematically for heat transfer between two fluids in a heat exchanger and between one hot and two cold fluids in a network of up to four heat exchangers. There currently are two approaches for minimizing the total area (minimum initial cost) of a heat exchanger network (HEN). One uses some empirically based best practices that are generally rooted in the second law, and the other uses optimization algorithms. This paper provides a third approach for HEN optimization, outlining a systematic approach to minimize the area, based on the maximization of productive entropy. The approach identifies the global minimum area for networks with any number of hot and cold streams. It constitutes another method for HEN optimization and an improvement over the existing methods that provide approximate solutions. The methodology is applied to two test cases, and it is shown that this approach improves on the results obtained using the traditional approaches. The approach can be applied to networks using any type of heat exchanger or a combination of different types of heat exchangers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信