与非局部非线性薛定谔方程相关的非局部有限维可积系统

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Xue Wang, Dianlou Du
{"title":"与非局部非线性薛定谔方程相关的非局部有限维可积系统","authors":"Xue Wang, Dianlou Du","doi":"10.1142/s0219887824500452","DOIUrl":null,"url":null,"abstract":"Based on the Lenard gradient sequence, a hierarchy of the nonlocal nonlinear Schrödinger (NNLS) equations is obtained. Using the Lax representation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure is presented. Then, under coordinate transformation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure can be expressed as the canonical Hamiltonian system of the standard symplectic structures. Moreover, the parametric representation of the NNLS equation and the nonlocal complex modified Korteweg–de Vries (NcmKdV) equation are constructed. Finally, according to the Hamilton–Jacobi theory, the action–angle variables are built and the inversion problem related to the Lie–Poisson Hamiltonian systems is discussed.","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"46 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrodinger equation hierarchy\",\"authors\":\"Xue Wang, Dianlou Du\",\"doi\":\"10.1142/s0219887824500452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the Lenard gradient sequence, a hierarchy of the nonlocal nonlinear Schrödinger (NNLS) equations is obtained. Using the Lax representation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure is presented. Then, under coordinate transformation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure can be expressed as the canonical Hamiltonian system of the standard symplectic structures. Moreover, the parametric representation of the NNLS equation and the nonlocal complex modified Korteweg–de Vries (NcmKdV) equation are constructed. Finally, according to the Hamilton–Jacobi theory, the action–angle variables are built and the inversion problem related to the Lie–Poisson Hamiltonian systems is discussed.\",\"PeriodicalId\":50320,\"journal\":{\"name\":\"International Journal of Geometric Methods in Modern Physics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geometric Methods in Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219887824500452\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219887824500452","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于Lenard梯度序列,得到了非局部非线性Schrödinger (NNLS)方程的层次结构。利用Lax表示,给出了具有Lie-Poisson结构的有限维非局部可积系统。然后在坐标变换下,将具有Lie-Poisson结构的非局部有限维可积系统表示为标准辛结构的正则哈密顿系统。此外,构造了NNLS方程和非局部复修正Korteweg-de Vries (NcmKdV)方程的参数表示。最后,根据Hamilton-Jacobi理论,建立了作用角变量,并讨论了Lie-Poisson hamilton系统的反演问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrodinger equation hierarchy
Based on the Lenard gradient sequence, a hierarchy of the nonlocal nonlinear Schrödinger (NNLS) equations is obtained. Using the Lax representation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure is presented. Then, under coordinate transformation, the nonlocal finite-dimensional integrable system with Lie–Poisson structure can be expressed as the canonical Hamiltonian system of the standard symplectic structures. Moreover, the parametric representation of the NNLS equation and the nonlocal complex modified Korteweg–de Vries (NcmKdV) equation are constructed. Finally, according to the Hamilton–Jacobi theory, the action–angle variables are built and the inversion problem related to the Lie–Poisson Hamiltonian systems is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信