{"title":"一种管式换热器和一种新型的方向相反的开孔矩形导流板的有效性","authors":"Md Atiqur Rahman","doi":"10.1108/wje-06-2023-0233","DOIUrl":null,"url":null,"abstract":"Purpose The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate. Design/methodology/approach The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined. Findings The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates. Originality/value The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.","PeriodicalId":23852,"journal":{"name":"World Journal of Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation\",\"authors\":\"Md Atiqur Rahman\",\"doi\":\"10.1108/wje-06-2023-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate. Design/methodology/approach The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined. Findings The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates. Originality/value The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.\",\"PeriodicalId\":23852,\"journal\":{\"name\":\"World Journal of Engineering\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/wje-06-2023-0233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/wje-06-2023-0233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effectiveness of a tubular heat exchanger and a novel perforated rectangular flow-deflector type baffle plate with opposing orientation
Purpose The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate. Design/methodology/approach The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined. Findings The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates. Originality/value The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.
期刊介绍:
The main focus of the World Journal of Engineering (WJE) is on, but not limited to; Civil Engineering, Material and Mechanical Engineering, Electrical and Electronic Engineering, Geotechnical and Mining Engineering, Nanoengineering and Nanoscience The journal bridges the gap between materials science and materials engineering, and between nano-engineering and nano-science. A distinguished editorial board assists the Editor-in-Chief, Professor Sun. All papers undergo a double-blind peer review process. For a full list of the journal''s esteemed review board, please see below.