从闪烁扫描图像诊断甲状腺结节的计算机辅助诊断系统

Aysun SEZER, Emre ALPTEKİN
{"title":"从闪烁扫描图像诊断甲状腺结节的计算机辅助诊断系统","authors":"Aysun SEZER, Emre ALPTEKİN","doi":"10.21205/deufmd.2023257504","DOIUrl":null,"url":null,"abstract":"In modern medicine, image recognition via segmentation of anatomical regions and automatic classification of diseases using medical images has a growing potential role in diagnosis of various diseases. Scintigraphy of thyroid is one of the established imaging modalities for diagnosis of thyroid gland disorders. In our study, the speckle noise was reduced in the scintigraphy images with the optimized Bayesian nonlocal mean filter. The thyroid gland was automatically segmented by local based active contour method and the thyroid gland pathologies were classified with convolutional neural networks (CNN). The proposed computer aided diagnosis (CAD) system was compared with Pyramid of Histograms of Orientation Gradients (PHOG), Gray Level Co occurrence Matrix (GLCM), Local Configuration Pattern (LCP) and Bag of Feature (BoF) methods. The common pathological patterns of scintigraphic images of the thyroid gland were successfully classified by CNN with an overall success rate of 91.19%. The comparative methods were PHOG, GLCM, LCP and BoF methods which provided overall success rates of 7.61%, 86.04%, 88.91% and 85.72% respectively. The proposed CNN based automatic diagnosis system provided promising results compared to handcrafted methods.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sintigrafik Görüntülerden Tiroid Nodülleri için Bilgisayar Destekli Tanı Sistemi\",\"authors\":\"Aysun SEZER, Emre ALPTEKİN\",\"doi\":\"10.21205/deufmd.2023257504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern medicine, image recognition via segmentation of anatomical regions and automatic classification of diseases using medical images has a growing potential role in diagnosis of various diseases. Scintigraphy of thyroid is one of the established imaging modalities for diagnosis of thyroid gland disorders. In our study, the speckle noise was reduced in the scintigraphy images with the optimized Bayesian nonlocal mean filter. The thyroid gland was automatically segmented by local based active contour method and the thyroid gland pathologies were classified with convolutional neural networks (CNN). The proposed computer aided diagnosis (CAD) system was compared with Pyramid of Histograms of Orientation Gradients (PHOG), Gray Level Co occurrence Matrix (GLCM), Local Configuration Pattern (LCP) and Bag of Feature (BoF) methods. The common pathological patterns of scintigraphic images of the thyroid gland were successfully classified by CNN with an overall success rate of 91.19%. The comparative methods were PHOG, GLCM, LCP and BoF methods which provided overall success rates of 7.61%, 86.04%, 88.91% and 85.72% respectively. The proposed CNN based automatic diagnosis system provided promising results compared to handcrafted methods.\",\"PeriodicalId\":11622,\"journal\":{\"name\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21205/deufmd.2023257504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2023257504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代医学中,利用医学图像进行解剖区域分割和疾病自动分类的图像识别在各种疾病的诊断中具有越来越大的潜在作用。甲状腺闪烁显像是诊断甲状腺疾病的常用影像学方法之一。在我们的研究中,使用优化的贝叶斯非局部平均滤波器来降低闪烁图像中的散斑噪声。采用基于局部的活动轮廓法对甲状腺进行自动分割,采用卷积神经网络(CNN)对甲状腺病理进行分类。将所提出的计算机辅助诊断(CAD)系统与方向梯度直方图金字塔法(PHOG)、灰度共生矩阵法(GLCM)、局部组态模式法(LCP)和特征包法(BoF)进行了比较。CNN对甲状腺显像常见病理模式进行了成功分类,总成功率为91.19%。PHOG法、GLCM法、LCP法和BoF法的总成功率分别为7.61%、86.04%、88.91%和85.72%。与手工制作的方法相比,提出的基于CNN的自动诊断系统提供了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sintigrafik Görüntülerden Tiroid Nodülleri için Bilgisayar Destekli Tanı Sistemi
In modern medicine, image recognition via segmentation of anatomical regions and automatic classification of diseases using medical images has a growing potential role in diagnosis of various diseases. Scintigraphy of thyroid is one of the established imaging modalities for diagnosis of thyroid gland disorders. In our study, the speckle noise was reduced in the scintigraphy images with the optimized Bayesian nonlocal mean filter. The thyroid gland was automatically segmented by local based active contour method and the thyroid gland pathologies were classified with convolutional neural networks (CNN). The proposed computer aided diagnosis (CAD) system was compared with Pyramid of Histograms of Orientation Gradients (PHOG), Gray Level Co occurrence Matrix (GLCM), Local Configuration Pattern (LCP) and Bag of Feature (BoF) methods. The common pathological patterns of scintigraphic images of the thyroid gland were successfully classified by CNN with an overall success rate of 91.19%. The comparative methods were PHOG, GLCM, LCP and BoF methods which provided overall success rates of 7.61%, 86.04%, 88.91% and 85.72% respectively. The proposed CNN based automatic diagnosis system provided promising results compared to handcrafted methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信