λ-伪星形函数若干性质的统一解

IF 0.6 Q3 MATHEMATICS
Musthafa Ibrahim, K. R. Karthikeyan
{"title":"λ-伪星形函数若干性质的统一解","authors":"Musthafa Ibrahim, K. R. Karthikeyan","doi":"10.37256/cm.4420232366","DOIUrl":null,"url":null,"abstract":"To unify and extend the study of various subclasses of starlike and convex functions, here we introduce a new subclass of λ-pseudo starlike symmetric functions. To add more versatility to our study, we have defined a new class of functions subordinate to a conic region impacted by the well-known Janowski functions. This study extends well-known results and unifies the studies of various subclasses of α-convex functions. Coefficient estimates of the inverse function and the Fekete-Szegő result for the function class are the main results. Some interesting special cases of our main results are also presented here.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"54 11","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified Solution of Some Properties Related to λ-Pseudo Starlike Functions\",\"authors\":\"Musthafa Ibrahim, K. R. Karthikeyan\",\"doi\":\"10.37256/cm.4420232366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To unify and extend the study of various subclasses of starlike and convex functions, here we introduce a new subclass of λ-pseudo starlike symmetric functions. To add more versatility to our study, we have defined a new class of functions subordinate to a conic region impacted by the well-known Janowski functions. This study extends well-known results and unifies the studies of various subclasses of α-convex functions. Coefficient estimates of the inverse function and the Fekete-Szegő result for the function class are the main results. Some interesting special cases of our main results are also presented here.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"54 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了统一和扩展星形函数和凸函数的各种子类的研究,本文引入了λ-伪星形对称函数的一个新的子类。为了给我们的研究增加更多的通用性,我们定义了一类新的函数,这些函数隶属于受众所周知的Janowski函数影响的二次区域。本研究推广了已知的结果,统一了α-凸函数的各种子类的研究。反函数的系数估计和函数类的fekete - szegov结果是主要的结果。本文还介绍了我们主要结果的一些有趣的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified Solution of Some Properties Related to λ-Pseudo Starlike Functions
To unify and extend the study of various subclasses of starlike and convex functions, here we introduce a new subclass of λ-pseudo starlike symmetric functions. To add more versatility to our study, we have defined a new class of functions subordinate to a conic region impacted by the well-known Janowski functions. This study extends well-known results and unifies the studies of various subclasses of α-convex functions. Coefficient estimates of the inverse function and the Fekete-Szegő result for the function class are the main results. Some interesting special cases of our main results are also presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信