{"title":"关于$p$进Coxeter轨道的分解","authors":"Alexander B. Ivanov","doi":"10.46298/epiga.2023.8562","DOIUrl":null,"url":null,"abstract":"We analyze the geometry of some $p$-adic Deligne--Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\\bf G}$ over a non-archimedean local field. We prove that when ${\\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"135 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a decomposition of $p$-adic Coxeter orbits\",\"authors\":\"Alexander B. Ivanov\",\"doi\":\"10.46298/epiga.2023.8562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the geometry of some $p$-adic Deligne--Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\\\\bf G}$ over a non-archimedean local field. We prove that when ${\\\\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.8562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.8562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We analyze the geometry of some $p$-adic Deligne--Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\bf G}$ over a non-archimedean local field. We prove that when ${\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.