{"title":"三波共振相互作用模型:平面波的谱和不稳定性","authors":"Marzia Romano","doi":"10.1007/s00033-023-02104-8","DOIUrl":null,"url":null,"abstract":"Abstract The three wave resonant interaction model (3WRI) is a non-dispersive system with quadratic coupling between the components that finds application in many areas, including nonlinear optics, fluids and plasma physics. Using its integrability, and in particular its Lax Pair representation, we carry out the linear stability analysis of the plane wave solutions interacting under resonant conditions when they are perturbed via localised perturbations. A topological classification of the so-called stability spectra is provided with respect to the physical parameters appearing both in the system itself and in its plane wave solution. Alongside the stability spectra, we compute the corresponding gain function, from which we deduce that this system is linearly unstable for any generic choice of the physical parameters. In addition to stability spectra of the same kind observed in the system of two coupled nonlinear Schrödinger equations, whose non-vanishing gain functions detect the occurrence of the modulational instability, the stability spectra of the 3WRI system possess new topological components, whose associated gain functions are different from those characterising the modulational instability. By drawing on a recent link between modulational instability and the occurrence of rogue waves, we speculate that linear instability of baseband-type can be a necessary condition for the onset of rogue wave types in the 3WRI system, thus providing a tool to predict the subsequent nonlinear evolution of the perturbation.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":"40 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 3-wave resonant interaction model: spectra and instabilities of plane waves\",\"authors\":\"Marzia Romano\",\"doi\":\"10.1007/s00033-023-02104-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The three wave resonant interaction model (3WRI) is a non-dispersive system with quadratic coupling between the components that finds application in many areas, including nonlinear optics, fluids and plasma physics. Using its integrability, and in particular its Lax Pair representation, we carry out the linear stability analysis of the plane wave solutions interacting under resonant conditions when they are perturbed via localised perturbations. A topological classification of the so-called stability spectra is provided with respect to the physical parameters appearing both in the system itself and in its plane wave solution. Alongside the stability spectra, we compute the corresponding gain function, from which we deduce that this system is linearly unstable for any generic choice of the physical parameters. In addition to stability spectra of the same kind observed in the system of two coupled nonlinear Schrödinger equations, whose non-vanishing gain functions detect the occurrence of the modulational instability, the stability spectra of the 3WRI system possess new topological components, whose associated gain functions are different from those characterising the modulational instability. By drawing on a recent link between modulational instability and the occurrence of rogue waves, we speculate that linear instability of baseband-type can be a necessary condition for the onset of rogue wave types in the 3WRI system, thus providing a tool to predict the subsequent nonlinear evolution of the perturbation.\",\"PeriodicalId\":54401,\"journal\":{\"name\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02104-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02104-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The 3-wave resonant interaction model: spectra and instabilities of plane waves
Abstract The three wave resonant interaction model (3WRI) is a non-dispersive system with quadratic coupling between the components that finds application in many areas, including nonlinear optics, fluids and plasma physics. Using its integrability, and in particular its Lax Pair representation, we carry out the linear stability analysis of the plane wave solutions interacting under resonant conditions when they are perturbed via localised perturbations. A topological classification of the so-called stability spectra is provided with respect to the physical parameters appearing both in the system itself and in its plane wave solution. Alongside the stability spectra, we compute the corresponding gain function, from which we deduce that this system is linearly unstable for any generic choice of the physical parameters. In addition to stability spectra of the same kind observed in the system of two coupled nonlinear Schrödinger equations, whose non-vanishing gain functions detect the occurrence of the modulational instability, the stability spectra of the 3WRI system possess new topological components, whose associated gain functions are different from those characterising the modulational instability. By drawing on a recent link between modulational instability and the occurrence of rogue waves, we speculate that linear instability of baseband-type can be a necessary condition for the onset of rogue wave types in the 3WRI system, thus providing a tool to predict the subsequent nonlinear evolution of the perturbation.
期刊介绍:
The Journal of Applied Mathematics and Physics (ZAMP) publishes papers of high scientific quality in Fluid Mechanics, Mechanics of Solids and Differential Equations/Applied Mathematics. A paper will be considered for publication if at least one of the following conditions is fulfilled:
The paper includes results or discussions which can be considered original and highly interesting.
The paper presents a new method.
The author reviews a problem or a class of problems with such profound insight that further research is encouraged.
The readers of ZAMP will find not only articles in their own special field but also original work in neighbouring domains. This will lead to an exchange of ideas; concepts and methods which have proven to be successful in one field may well be useful to other areas. ZAMP attempts to publish articles reasonably quickly. Longer papers are published in the section "Original Papers", shorter ones may appear under "Brief Reports" where publication is particularly rapid. The journal includes a "Book Review" section and provides information on activities (such as upcoming symposia, meetings or special courses) which are of interest to its readers.