{"title":"丢番图方程的整数解\\(\\left (1-\\frac{1}{\\mathit{x}}\\right)\\)\\(\\left (1-\\frac{1}{\\mathit{y}}\\right)\\)\\(\\left (1-\\frac{1}{\\mathit{z}}\\right)\\) = \\(\\frac{1}{\\mathit{l}}\\)","authors":"Qiang Wang, Qingwei Tu","doi":"10.9734/arjom/2023/v19i11758","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly find all solutions of the diophantine equation \\(\\left (1-\\frac{1}{\\mathit{x}}\\right)\\) \\(\\left (1-\\frac{1}{\\mathit{y}}\\right)\\) \\(\\left (1-\\frac{1}{\\mathit{z}}\\right)\\) = \\(\\frac{1}{\\mathit{l}}\\) in integer variables (\\(\\mathit{x}\\), \\(\\mathit{y}\\), \\(\\mathit{z}\\), \\(\\mathit{l}\\) ).","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integer Solutions of the Diophantine Equation \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{x}}\\\\right)\\\\) \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{y}}\\\\right)\\\\) \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{z}}\\\\right)\\\\) = \\\\(\\\\frac{1}{\\\\mathit{l}}\\\\)\",\"authors\":\"Qiang Wang, Qingwei Tu\",\"doi\":\"10.9734/arjom/2023/v19i11758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly find all solutions of the diophantine equation \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{x}}\\\\right)\\\\) \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{y}}\\\\right)\\\\) \\\\(\\\\left (1-\\\\frac{1}{\\\\mathit{z}}\\\\right)\\\\) = \\\\(\\\\frac{1}{\\\\mathit{l}}\\\\) in integer variables (\\\\(\\\\mathit{x}\\\\), \\\\(\\\\mathit{y}\\\\), \\\\(\\\\mathit{z}\\\\), \\\\(\\\\mathit{l}\\\\) ).\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i11758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i11758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integer Solutions of the Diophantine Equation \(\left (1-\frac{1}{\mathit{x}}\right)\) \(\left (1-\frac{1}{\mathit{y}}\right)\) \(\left (1-\frac{1}{\mathit{z}}\right)\) = \(\frac{1}{\mathit{l}}\)
In this paper, we mainly find all solutions of the diophantine equation \(\left (1-\frac{1}{\mathit{x}}\right)\) \(\left (1-\frac{1}{\mathit{y}}\right)\) \(\left (1-\frac{1}{\mathit{z}}\right)\) = \(\frac{1}{\mathit{l}}\) in integer variables (\(\mathit{x}\), \(\mathit{y}\), \(\mathit{z}\), \(\mathit{l}\) ).