{"title":"实线上度量的有效弱收敛和模糊收敛","authors":"Diego A. Rojas","doi":"10.1007/s00153-023-00886-2","DOIUrl":null,"url":null,"abstract":"<div><p>We expand our effective framework for weak convergence of measures on the real line by showing that effective convergence in the Prokhorov metric is equivalent to effective weak convergence. In addition, we establish a framework for the study of the effective theory of vague convergence of measures. We introduce a uniform notion and a non-uniform notion of vague convergence, and we show that both these notions are equivalent. However, limits under effective vague convergence may not be computable even when they are finite. We give an example of a finite incomputable effective vague limit measure, and we provide a necessary and sufficient condition so that effective vague convergence produces a computable limit. Finally, we determine a sufficient condition for which effective weak and vague convergence of measures coincide. As a corollary, we obtain an effective version of the equivalence between classical weak and vague convergence of sequences of probability measures.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-023-00886-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Effective weak and vague convergence of measures on the real line\",\"authors\":\"Diego A. Rojas\",\"doi\":\"10.1007/s00153-023-00886-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We expand our effective framework for weak convergence of measures on the real line by showing that effective convergence in the Prokhorov metric is equivalent to effective weak convergence. In addition, we establish a framework for the study of the effective theory of vague convergence of measures. We introduce a uniform notion and a non-uniform notion of vague convergence, and we show that both these notions are equivalent. However, limits under effective vague convergence may not be computable even when they are finite. We give an example of a finite incomputable effective vague limit measure, and we provide a necessary and sufficient condition so that effective vague convergence produces a computable limit. Finally, we determine a sufficient condition for which effective weak and vague convergence of measures coincide. As a corollary, we obtain an effective version of the equivalence between classical weak and vague convergence of sequences of probability measures.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-023-00886-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00886-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00886-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Effective weak and vague convergence of measures on the real line
We expand our effective framework for weak convergence of measures on the real line by showing that effective convergence in the Prokhorov metric is equivalent to effective weak convergence. In addition, we establish a framework for the study of the effective theory of vague convergence of measures. We introduce a uniform notion and a non-uniform notion of vague convergence, and we show that both these notions are equivalent. However, limits under effective vague convergence may not be computable even when they are finite. We give an example of a finite incomputable effective vague limit measure, and we provide a necessary and sufficient condition so that effective vague convergence produces a computable limit. Finally, we determine a sufficient condition for which effective weak and vague convergence of measures coincide. As a corollary, we obtain an effective version of the equivalence between classical weak and vague convergence of sequences of probability measures.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.