D. Yu. Ivkin, M. V. Krasnova, S. V. Okovity, A. A. Karpov, A. A. Kulikov, E. I. Yeletskaya
{"title":"恩格列净治疗实验性心肌梗死的疗效观察","authors":"D. Yu. Ivkin, M. V. Krasnova, S. V. Okovity, A. A. Karpov, A. A. Kulikov, E. I. Yeletskaya","doi":"10.33380/2305-2066-2023-12-4-1588","DOIUrl":null,"url":null,"abstract":"Introduction. With the emergence of empagliflozin in the pharmaceutical market, there has been an increase in publications on the primary and secondary pharmacodynamics of the drug, and the list of potential indications for the use of this sodium-glucose co-transporter inhibitor is increasing. Hypotheses about pharmacological effects and mechanisms of their implementation are tested both in large-scale clinical studies and in animal experiments. Aim. The purpose of this work was to study the effectiveness of empagliflozin by echocardiographic, histological and molecular biological analyses at the three most significant points of the dynamic transition from acute myocardial infarction to post-infarction chronic heart failure in laboratory male rats. Materials and methods. The experiment was performed on 60 male outbred rats. Myocardial infarction was modeled in narcotic animals by permanent ligation of the left coronary artery. Based on echocardiographic (EchoCG) study data, animals were randomized to two groups: control infarction: untreated pathology group treated with placebo and pathology group treated with empagliflozin 1 mg/kg per os intragastric daily from the first day of the experiment. At 10, 20 and 30 days after the operation, the animals were also subjected to EchoCG testing, and a group of 10 animals from each group were euthanized for histological examination and molecular analysis. Results and discussion. Empagliflozin use in animals after myocardial infarction modeling contributed to a significant increase in myocardial performance on days 10, 20 and 30, reaching a maximum on day 20 (47.58 ± 1.87 %). The drug promotes long-term preservation of the area of damage to the heart muscle with early formation of mature connective tissue, and also increases myocardial resistance to hypoxia by increasing the amount of HIF-1. Conclusion. Based on the studies carried out, it can be concluded that it is possible to use the sodium-glucose cotransporter type 2 empagliflozin in the formation of post-infarction chronic heart failure in the conditions of normoglycemia.","PeriodicalId":36465,"journal":{"name":"Drug Development and Registration","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of Empagliflozin in the Treatment of Experimental Myocardial Infarction\",\"authors\":\"D. Yu. Ivkin, M. V. Krasnova, S. V. Okovity, A. A. Karpov, A. A. Kulikov, E. I. Yeletskaya\",\"doi\":\"10.33380/2305-2066-2023-12-4-1588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. With the emergence of empagliflozin in the pharmaceutical market, there has been an increase in publications on the primary and secondary pharmacodynamics of the drug, and the list of potential indications for the use of this sodium-glucose co-transporter inhibitor is increasing. Hypotheses about pharmacological effects and mechanisms of their implementation are tested both in large-scale clinical studies and in animal experiments. Aim. The purpose of this work was to study the effectiveness of empagliflozin by echocardiographic, histological and molecular biological analyses at the three most significant points of the dynamic transition from acute myocardial infarction to post-infarction chronic heart failure in laboratory male rats. Materials and methods. The experiment was performed on 60 male outbred rats. Myocardial infarction was modeled in narcotic animals by permanent ligation of the left coronary artery. Based on echocardiographic (EchoCG) study data, animals were randomized to two groups: control infarction: untreated pathology group treated with placebo and pathology group treated with empagliflozin 1 mg/kg per os intragastric daily from the first day of the experiment. At 10, 20 and 30 days after the operation, the animals were also subjected to EchoCG testing, and a group of 10 animals from each group were euthanized for histological examination and molecular analysis. Results and discussion. Empagliflozin use in animals after myocardial infarction modeling contributed to a significant increase in myocardial performance on days 10, 20 and 30, reaching a maximum on day 20 (47.58 ± 1.87 %). The drug promotes long-term preservation of the area of damage to the heart muscle with early formation of mature connective tissue, and also increases myocardial resistance to hypoxia by increasing the amount of HIF-1. Conclusion. Based on the studies carried out, it can be concluded that it is possible to use the sodium-glucose cotransporter type 2 empagliflozin in the formation of post-infarction chronic heart failure in the conditions of normoglycemia.\",\"PeriodicalId\":36465,\"journal\":{\"name\":\"Drug Development and Registration\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development and Registration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33380/2305-2066-2023-12-4-1588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Registration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33380/2305-2066-2023-12-4-1588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Efficacy of Empagliflozin in the Treatment of Experimental Myocardial Infarction
Introduction. With the emergence of empagliflozin in the pharmaceutical market, there has been an increase in publications on the primary and secondary pharmacodynamics of the drug, and the list of potential indications for the use of this sodium-glucose co-transporter inhibitor is increasing. Hypotheses about pharmacological effects and mechanisms of their implementation are tested both in large-scale clinical studies and in animal experiments. Aim. The purpose of this work was to study the effectiveness of empagliflozin by echocardiographic, histological and molecular biological analyses at the three most significant points of the dynamic transition from acute myocardial infarction to post-infarction chronic heart failure in laboratory male rats. Materials and methods. The experiment was performed on 60 male outbred rats. Myocardial infarction was modeled in narcotic animals by permanent ligation of the left coronary artery. Based on echocardiographic (EchoCG) study data, animals were randomized to two groups: control infarction: untreated pathology group treated with placebo and pathology group treated with empagliflozin 1 mg/kg per os intragastric daily from the first day of the experiment. At 10, 20 and 30 days after the operation, the animals were also subjected to EchoCG testing, and a group of 10 animals from each group were euthanized for histological examination and molecular analysis. Results and discussion. Empagliflozin use in animals after myocardial infarction modeling contributed to a significant increase in myocardial performance on days 10, 20 and 30, reaching a maximum on day 20 (47.58 ± 1.87 %). The drug promotes long-term preservation of the area of damage to the heart muscle with early formation of mature connective tissue, and also increases myocardial resistance to hypoxia by increasing the amount of HIF-1. Conclusion. Based on the studies carried out, it can be concluded that it is possible to use the sodium-glucose cotransporter type 2 empagliflozin in the formation of post-infarction chronic heart failure in the conditions of normoglycemia.