基于地形轮廓线的无人机影像坡面运动方向滑坡形态提取

IF 4.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yujie Zhang, Jia Li, Jiajia Liu, Wenbin Xie, Ping Duan
{"title":"基于地形轮廓线的无人机影像坡面运动方向滑坡形态提取","authors":"Yujie Zhang, Jia Li, Jiajia Liu, Wenbin Xie, Ping Duan","doi":"10.1080/19475705.2023.2278276","DOIUrl":null,"url":null,"abstract":"The landslide morphology is quickly and accurately extracted from Unmanned Air Vehicle (UAV) images. It is of great significance for emergency rescue and quantitative evaluation of landslide disasters. However, due to the complexity of landslide morphology, choosing the reasonable extraction thresholds is a challenging issue. A threshold selection method of Topographic Profile along the Direction of Slope Movement (TP-DSM) was proposed. Firstly, a hierarchical extraction rule sets for landslide morphology was constructed by integrating multi-feature information such as spectral, texture, geometry, topography and space of UAV images. Second, TP-DSM was proposed to select the optimal elevation thresholds for classifying different landslide morphology. Finally, the thresholds were introduced into the rule sets to achieve effective extraction of landslide morphology. This study uses Digital Orthophoto Map (DOM) and Digital Elevation Model (DEM) generated by UAV images as data sources, and the landslide in Luquan County, Yunnan Province, China as the Study area, the results show that the overall accuracy (OA) of landslide morphology extraction was 89.58%, and the Kappa coefficient was 0.88, which is effective and more consistent with the reality. The proposed method can also be applied to other potential locations.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":"142 2","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of landslide morphology based on Topographic Profile along the Direction of Slope Movement using UAV images\",\"authors\":\"Yujie Zhang, Jia Li, Jiajia Liu, Wenbin Xie, Ping Duan\",\"doi\":\"10.1080/19475705.2023.2278276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The landslide morphology is quickly and accurately extracted from Unmanned Air Vehicle (UAV) images. It is of great significance for emergency rescue and quantitative evaluation of landslide disasters. However, due to the complexity of landslide morphology, choosing the reasonable extraction thresholds is a challenging issue. A threshold selection method of Topographic Profile along the Direction of Slope Movement (TP-DSM) was proposed. Firstly, a hierarchical extraction rule sets for landslide morphology was constructed by integrating multi-feature information such as spectral, texture, geometry, topography and space of UAV images. Second, TP-DSM was proposed to select the optimal elevation thresholds for classifying different landslide morphology. Finally, the thresholds were introduced into the rule sets to achieve effective extraction of landslide morphology. This study uses Digital Orthophoto Map (DOM) and Digital Elevation Model (DEM) generated by UAV images as data sources, and the landslide in Luquan County, Yunnan Province, China as the Study area, the results show that the overall accuracy (OA) of landslide morphology extraction was 89.58%, and the Kappa coefficient was 0.88, which is effective and more consistent with the reality. The proposed method can also be applied to other potential locations.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":\"142 2\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2278276\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2278276","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从无人机(UAV)图像中快速准确地提取滑坡形态。对滑坡灾害的应急救援和定量评价具有重要意义。然而,由于滑坡形态的复杂性,选择合理的提取阈值是一个具有挑战性的问题。提出了一种沿坡移方向地形剖面的阈值选择方法。首先,综合无人机影像的光谱、纹理、几何、地形、空间等多特征信息,构建滑坡形态分层提取规则集;其次,提出了TP-DSM方法,选取最优高程阈值对不同滑坡形态进行分类;最后,在规则集中引入阈值,实现对滑坡形态的有效提取。本研究以无人机影像生成的数字正射影像图(DOM)和数字高程模型(DEM)为数据源,以中国云南省禄泉县滑坡为研究区,结果表明,滑坡形态提取的总体精度(OA)为89.58%,Kappa系数为0.88,有效且更符合实际。所提出的方法也可以应用于其他潜在的地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of landslide morphology based on Topographic Profile along the Direction of Slope Movement using UAV images
The landslide morphology is quickly and accurately extracted from Unmanned Air Vehicle (UAV) images. It is of great significance for emergency rescue and quantitative evaluation of landslide disasters. However, due to the complexity of landslide morphology, choosing the reasonable extraction thresholds is a challenging issue. A threshold selection method of Topographic Profile along the Direction of Slope Movement (TP-DSM) was proposed. Firstly, a hierarchical extraction rule sets for landslide morphology was constructed by integrating multi-feature information such as spectral, texture, geometry, topography and space of UAV images. Second, TP-DSM was proposed to select the optimal elevation thresholds for classifying different landslide morphology. Finally, the thresholds were introduced into the rule sets to achieve effective extraction of landslide morphology. This study uses Digital Orthophoto Map (DOM) and Digital Elevation Model (DEM) generated by UAV images as data sources, and the landslide in Luquan County, Yunnan Province, China as the Study area, the results show that the overall accuracy (OA) of landslide morphology extraction was 89.58%, and the Kappa coefficient was 0.88, which is effective and more consistent with the reality. The proposed method can also be applied to other potential locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics Natural Hazards & Risk
Geomatics Natural Hazards & Risk GEOSCIENCES, MULTIDISCIPLINARY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
7.70
自引率
4.80%
发文量
117
审稿时长
>12 weeks
期刊介绍: The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards. Geomatics, Natural Hazards and Risk covers the following topics: - Remote sensing techniques - Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change - Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards. - Results of findings on major natural hazards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信