{"title":"具有明确符号的因子码的马尔可夫容量","authors":"GUANGYUE HAN, BRIAN MARCUS, CHENGYU WU","doi":"10.1017/etds.2023.103","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we first give a necessary and sufficient condition for a factor code with an unambiguous symbol to admit a subshift of finite type restricted to which it is one-to-one and onto. We then give a necessary and sufficient condition for the standard factor code on a spoke graph to admit a subshift of finite type restricted to which it is finite-to-one and onto. We also conjecture that for such a code, the finite-to-one and onto property is equivalent to the existence of a stationary Markov chain that achieves the capacity of the corresponding deterministic channel.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"29 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov capacity for factor codes with an unambiguous symbol\",\"authors\":\"GUANGYUE HAN, BRIAN MARCUS, CHENGYU WU\",\"doi\":\"10.1017/etds.2023.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we first give a necessary and sufficient condition for a factor code with an unambiguous symbol to admit a subshift of finite type restricted to which it is one-to-one and onto. We then give a necessary and sufficient condition for the standard factor code on a spoke graph to admit a subshift of finite type restricted to which it is finite-to-one and onto. We also conjecture that for such a code, the finite-to-one and onto property is equivalent to the existence of a stationary Markov chain that achieves the capacity of the corresponding deterministic channel.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"29 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.103\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Markov capacity for factor codes with an unambiguous symbol
Abstract In this paper, we first give a necessary and sufficient condition for a factor code with an unambiguous symbol to admit a subshift of finite type restricted to which it is one-to-one and onto. We then give a necessary and sufficient condition for the standard factor code on a spoke graph to admit a subshift of finite type restricted to which it is finite-to-one and onto. We also conjecture that for such a code, the finite-to-one and onto property is equivalent to the existence of a stationary Markov chain that achieves the capacity of the corresponding deterministic channel.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.