{"title":"小鼠模型中苦杏仁苷通过胸腺基质淋巴生成素-树突状细胞ox40配体轴改善过敏性哮喘","authors":"Wen Cui, Huan Zhou, Ya-zun Liu, Yan Yang, Yi-zhong Hu, Zhao-peng Han, Jian-er Yu, Zheng Xue","doi":"10.18502/ijaai.v22i5.13993","DOIUrl":null,"url":null,"abstract":"Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)–dendritic cell (DC)–OX40L axis was investigated.
 A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively.
 Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased.
 Amygdalin thus regulates the Th1/Th2 balance through the TSLP–DC–OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amygdalin Improves Allergic Asthma via the Thymic Stromal Lymphopoietin–dendritic Cell–OX40 Ligand Axis in a Mouse Model\",\"authors\":\"Wen Cui, Huan Zhou, Ya-zun Liu, Yan Yang, Yi-zhong Hu, Zhao-peng Han, Jian-er Yu, Zheng Xue\",\"doi\":\"10.18502/ijaai.v22i5.13993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)–dendritic cell (DC)–OX40L axis was investigated.
 A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively.
 Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased.
 Amygdalin thus regulates the Th1/Th2 balance through the TSLP–DC–OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.\",\"PeriodicalId\":14560,\"journal\":{\"name\":\"Iranian journal of allergy, asthma, and immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of allergy, asthma, and immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/ijaai.v22i5.13993\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of allergy, asthma, and immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijaai.v22i5.13993","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ALLERGY","Score":null,"Total":0}
Amygdalin Improves Allergic Asthma via the Thymic Stromal Lymphopoietin–dendritic Cell–OX40 Ligand Axis in a Mouse Model
Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)–dendritic cell (DC)–OX40L axis was investigated.
A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively.
Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased.
Amygdalin thus regulates the Th1/Th2 balance through the TSLP–DC–OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.
期刊介绍:
The Iranian Journal of Allergy, Asthma and Immunology (IJAAI), an international peer-reviewed scientific and research journal, seeks to publish original papers, selected review articles, case-based reviews, and other articles of special interest related to the fields of asthma, allergy and immunology. The journal is an official publication of the Iranian Society of Asthma and Allergy (ISAA), which is supported by the Immunology, Asthma and Allergy Research Institute (IAARI) and published by Tehran University of Medical Sciences (TUMS). The journal seeks to provide its readers with the highest quality materials published through a process of careful peer reviews and editorial comments. All papers are published in English.