正交拟阵在部分域上的可表示性

Q3 Mathematics
Matthew Baker, Tong Jin
{"title":"正交拟阵在部分域上的可表示性","authors":"Matthew Baker, Tong Jin","doi":"10.5802/alco.301","DOIUrl":null,"url":null,"abstract":"Let r≤n be nonnegative integers, and let N=n r-1. For a matroid M of rank r on the finite set E=[n] and a partial field k in the sense of Semple–Whittle, it is known that the following are equivalent: (a) M is representable over k; (b) there is a point p=(p J )∈P N (k) with support M (meaning that Supp(p):={J∈E r|p J ≠0} of p is the set of bases of M) satisfying the Grassmann-Plücker equations; and (c) there is a point p=(p J )∈P N (k) with support M satisfying just the 3-term Grassmann-Plücker equations. Moreover, by a theorem of P. Nelson, almost all matroids (meaning asymptotically 100%) are not representable over any partial field. We prove analogues of these facts for Lagrangian orthogonal matroids in the sense of Gelfand–Serganova, which are equivalent to even Delta-matroids in the sense of Bouchet.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"348 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representability of orthogonal matroids over partial fields\",\"authors\":\"Matthew Baker, Tong Jin\",\"doi\":\"10.5802/alco.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let r≤n be nonnegative integers, and let N=n r-1. For a matroid M of rank r on the finite set E=[n] and a partial field k in the sense of Semple–Whittle, it is known that the following are equivalent: (a) M is representable over k; (b) there is a point p=(p J )∈P N (k) with support M (meaning that Supp(p):={J∈E r|p J ≠0} of p is the set of bases of M) satisfying the Grassmann-Plücker equations; and (c) there is a point p=(p J )∈P N (k) with support M satisfying just the 3-term Grassmann-Plücker equations. Moreover, by a theorem of P. Nelson, almost all matroids (meaning asymptotically 100%) are not representable over any partial field. We prove analogues of these facts for Lagrangian orthogonal matroids in the sense of Gelfand–Serganova, which are equivalent to even Delta-matroids in the sense of Bouchet.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"348 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设r≤n为非负整数,设n =n r-1。对于有限集E=[n]上的秩为r的矩阵M和Semple-Whittle意义上的部分域k,已知下列条件是等价的:(a) M在k上是可表示的;(b)存在一个点p=(p J)∈pn (k),支持点M(即Supp(p):={J∈E r|p J≠0},p是M的基的集合)满足grassmann - plicker方程;(c)存在点p=(p J)∈pn (k),且支持点M仅满足3项grassmann - pl cker方程。此外,根据P. Nelson的一个定理,几乎所有的拟阵(即渐近100%)在任何部分域上都是不可表示的。我们证明了Gelfand-Serganova意义上的拉格朗日正交拟阵与Bouchet意义上的偶三角拟阵的相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representability of orthogonal matroids over partial fields
Let r≤n be nonnegative integers, and let N=n r-1. For a matroid M of rank r on the finite set E=[n] and a partial field k in the sense of Semple–Whittle, it is known that the following are equivalent: (a) M is representable over k; (b) there is a point p=(p J )∈P N (k) with support M (meaning that Supp(p):={J∈E r|p J ≠0} of p is the set of bases of M) satisfying the Grassmann-Plücker equations; and (c) there is a point p=(p J )∈P N (k) with support M satisfying just the 3-term Grassmann-Plücker equations. Moreover, by a theorem of P. Nelson, almost all matroids (meaning asymptotically 100%) are not representable over any partial field. We prove analogues of these facts for Lagrangian orthogonal matroids in the sense of Gelfand–Serganova, which are equivalent to even Delta-matroids in the sense of Bouchet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信