{"title":"CO2电还原制CO的综合建模","authors":"Matteo Agliuzza, Candido Fabrizio Pirri, Adriano Sacco","doi":"10.1088/2515-7655/ad0a39","DOIUrl":null,"url":null,"abstract":"Abstract In the research for the decarbonization processes, electrochemistry is among the most studied routes for the conversion of carbon dioxide in added-value products, thanks to the up-scalability and the mild conditions of work of the technology. In this framework, modeling the electrochemical reactor is a powerful tool to predict and optimize important features of the electroreduction. In this study, we propose a comprehensive modeling for the whole electrochemical reactor, which has been validated through the experiments with good agreement. In particular, the performance of the cell is studied as a function of the voltage applied, for different sizes of the reactor. Furthermore, the model has been used to study the chemical conditions at the cathode surface, as well as electrochemical conditions at different applied biases and flow rates of the electrolyte.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"323 12","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive modeling for the CO<sub>2</sub> electroreduction to CO\",\"authors\":\"Matteo Agliuzza, Candido Fabrizio Pirri, Adriano Sacco\",\"doi\":\"10.1088/2515-7655/ad0a39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the research for the decarbonization processes, electrochemistry is among the most studied routes for the conversion of carbon dioxide in added-value products, thanks to the up-scalability and the mild conditions of work of the technology. In this framework, modeling the electrochemical reactor is a powerful tool to predict and optimize important features of the electroreduction. In this study, we propose a comprehensive modeling for the whole electrochemical reactor, which has been validated through the experiments with good agreement. In particular, the performance of the cell is studied as a function of the voltage applied, for different sizes of the reactor. Furthermore, the model has been used to study the chemical conditions at the cathode surface, as well as electrochemical conditions at different applied biases and flow rates of the electrolyte.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"323 12\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad0a39\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad0a39","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A comprehensive modeling for the CO2 electroreduction to CO
Abstract In the research for the decarbonization processes, electrochemistry is among the most studied routes for the conversion of carbon dioxide in added-value products, thanks to the up-scalability and the mild conditions of work of the technology. In this framework, modeling the electrochemical reactor is a powerful tool to predict and optimize important features of the electroreduction. In this study, we propose a comprehensive modeling for the whole electrochemical reactor, which has been validated through the experiments with good agreement. In particular, the performance of the cell is studied as a function of the voltage applied, for different sizes of the reactor. Furthermore, the model has been used to study the chemical conditions at the cathode surface, as well as electrochemical conditions at different applied biases and flow rates of the electrolyte.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.