具有反射边的多边形中的热流

IF 0.8 3区 数学 Q2 MATHEMATICS
Sam Farrington, Katie Gittins
{"title":"具有反射边的多边形中的热流","authors":"Sam Farrington, Katie Gittins","doi":"10.1007/s00020-023-02749-0","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the heat flow in an open, bounded set D in $$\\mathbb {R}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> with polygonal boundary $$\\partial D$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:math> . We suppose that D contains an open, bounded set $$\\widetilde{D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> with polygonal boundary $$\\partial \\widetilde{D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:mrow> </mml:math> . The initial condition is the indicator function of $$\\widetilde{D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> and we impose a Neumann boundary condition on the edges of $$\\partial D$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:math> . We obtain an asymptotic formula for the heat content of $$\\widetilde{D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> in D as time $$t\\downarrow 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>↓</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> .","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"316 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Flow in Polygons with Reflecting Edges\",\"authors\":\"Sam Farrington, Katie Gittins\",\"doi\":\"10.1007/s00020-023-02749-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the heat flow in an open, bounded set D in $$\\\\mathbb {R}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> with polygonal boundary $$\\\\partial D$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:math> . We suppose that D contains an open, bounded set $$\\\\widetilde{D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> with polygonal boundary $$\\\\partial \\\\widetilde{D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:mrow> </mml:math> . The initial condition is the indicator function of $$\\\\widetilde{D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> and we impose a Neumann boundary condition on the edges of $$\\\\partial D$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:math> . We obtain an asymptotic formula for the heat content of $$\\\\widetilde{D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:math> in D as time $$t\\\\downarrow 0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>↓</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> .\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"316 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-023-02749-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00020-023-02749-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了在$$\mathbb {R}^2$$ r2中具有多边形边界$$\partial D$$∂D的开放有界集D中的热流。我们假设D包含一个开放的有界集合$$\widetilde{D}$$ D,其多边形边界$$\partial \widetilde{D}$$∂D。初始条件是$$\widetilde{D}$$ D的指示函数,我们在$$\partial D$$∂D的边缘上施加了诺伊曼边界条件。我们得到了时间$$t\downarrow 0$$ t↓0时$$\widetilde{D}$$ D在D中的热含量的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heat Flow in Polygons with Reflecting Edges

Heat Flow in Polygons with Reflecting Edges
Abstract We investigate the heat flow in an open, bounded set D in $$\mathbb {R}^2$$ R 2 with polygonal boundary $$\partial D$$ D . We suppose that D contains an open, bounded set $$\widetilde{D}$$ D ~ with polygonal boundary $$\partial \widetilde{D}$$ D ~ . The initial condition is the indicator function of $$\widetilde{D}$$ D ~ and we impose a Neumann boundary condition on the edges of $$\partial D$$ D . We obtain an asymptotic formula for the heat content of $$\widetilde{D}$$ D ~ in D as time $$t\downarrow 0$$ t 0 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信