通过交叉验证确定高维因子模型中的中断数

IF 0.7 4区 经济学 Q3 ECONOMICS
Ruichao Zhou, Lu Wang, Jianhong Wu
{"title":"通过交叉验证确定高维因子模型中的中断数","authors":"Ruichao Zhou, Lu Wang, Jianhong Wu","doi":"10.1515/snde-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a cross-validation method to estimate the number of breaks in high-dimensional factor models. To preserve the original change structure, the parity-splitting strategy is adopted when employing the cross-validation method. The consistency of the estimator is established under some mild conditions. Simulation results show desired finite sample performance of the proposed method, especially in comparison with methods that need to predetermine the tuning parameters.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"310 8","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation\",\"authors\":\"Ruichao Zhou, Lu Wang, Jianhong Wu\",\"doi\":\"10.1515/snde-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a cross-validation method to estimate the number of breaks in high-dimensional factor models. To preserve the original change structure, the parity-splitting strategy is adopted when employing the cross-validation method. The consistency of the estimator is established under some mild conditions. Simulation results show desired finite sample performance of the proposed method, especially in comparison with methods that need to predetermine the tuning parameters.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"310 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0037\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0037","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种交叉验证方法来估计高维因子模型中的断裂数。采用交叉验证方法时,为了保持原有的变更结构,采用了奇偶分离策略。在一些温和的条件下,建立了估计量的相合性。仿真结果表明,该方法具有良好的有限样本性能,特别是与需要预先确定调谐参数的方法相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation
Abstract This paper proposes a cross-validation method to estimate the number of breaks in high-dimensional factor models. To preserve the original change structure, the parity-splitting strategy is adopted when employing the cross-validation method. The consistency of the estimator is established under some mild conditions. Simulation results show desired finite sample performance of the proposed method, especially in comparison with methods that need to predetermine the tuning parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信