条形p-拉普拉斯问题有界解的唯一性

Pub Date : 2023-05-11 DOI:10.5802/crmath.442
Phuong Le
{"title":"条形p-拉普拉斯问题有界解的唯一性","authors":"Phuong Le","doi":"10.5802/crmath.442","DOIUrl":null,"url":null,"abstract":"We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We show that if the width of the strip is smaller than some d 0 ∈(0,+∞], then the problem admits a unique bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and belongs to the C 2 class. We also show that the problem has no bounded solution in the case that d 0 <+∞ and the width of the strip is larger than or equal to d 0 . An analogous rigidity result in the whole space was obtained recently by Esposito et al. [8]","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniqueness of bounded solutions to p-Laplace problems in strips\",\"authors\":\"Phuong Le\",\"doi\":\"10.5802/crmath.442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We show that if the width of the strip is smaller than some d 0 ∈(0,+∞], then the problem admits a unique bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and belongs to the C 2 class. We also show that the problem has no bounded solution in the case that d 0 <+∞ and the width of the strip is larger than or equal to d 0 . An analogous rigidity result in the whole space was obtained recently by Esposito et al. [8]\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑具有双常边界狄利克雷条件的带上的p-拉普拉斯问题。我们证明了如果条形图的宽度小于某d 0∈(0,+∞),则问题存在一个唯一有界解,该解是严格单调的。因此这个唯一解是一维对称的,属于c2类。我们还证明了当d 0 <+∞且条带宽度大于等于d 0时,问题没有有界解。最近,Esposito等人在整个空间中得到了一个类似的刚度结果。[8]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniqueness of bounded solutions to p-Laplace problems in strips
We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We show that if the width of the strip is smaller than some d 0 ∈(0,+∞], then the problem admits a unique bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and belongs to the C 2 class. We also show that the problem has no bounded solution in the case that d 0 <+∞ and the width of the strip is larger than or equal to d 0 . An analogous rigidity result in the whole space was obtained recently by Esposito et al. [8]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信