{"title":"清洁能源的曙光:强化传热、辐射冷却和爆竹式可控核聚变发电系统","authors":"Weimin Yang, Enxiang Zhang, Jiuzhou Zhao, Yifan Zhao, Kangkang Tang, Yan Cui, Xianyu Luo, Zhen Zhang, Chengjun Li, Fenghua Zhang, Xiaodong Gao","doi":"10.18686/cest.v1i1.61","DOIUrl":null,"url":null,"abstract":"Global climate change has become a major environmental threat and development challenge facing humanity. Controllable nuclear fusion is a globally recognized ideal solution for clean energy, but its required high-energy triggering conditions and intense energy release prevent existing technologies from achieving safe, stable, and long-term continuous operation. Here, inspired by the traditional Chinese firecrackers, we propose a pulsed fusion reaction flywheel energy storage multi-reactor relay operation to drive the steam turbine to continuously and stably generate electricity for a long period of time; meanwhile, to install cleaning rotors in the cooling medium pipeline to enhance heat exchange, and to apply radiative cooling technology on the surface of the cooling tower to improve cooling efficiency and to reduce energy consumption, thereby improving system safety and overall energy efficiency. Proposing the combination of original technologies at both the hot end and the cold end of the system, we strive to open up a new way for controllable nuclear fusion power generation.","PeriodicalId":496532,"journal":{"name":"Clean Energy Science and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dawn of clean energy: Enhanced heat transfer, radiative cooling, and firecracker-style controlled nuclear fusion power generation system\",\"authors\":\"Weimin Yang, Enxiang Zhang, Jiuzhou Zhao, Yifan Zhao, Kangkang Tang, Yan Cui, Xianyu Luo, Zhen Zhang, Chengjun Li, Fenghua Zhang, Xiaodong Gao\",\"doi\":\"10.18686/cest.v1i1.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global climate change has become a major environmental threat and development challenge facing humanity. Controllable nuclear fusion is a globally recognized ideal solution for clean energy, but its required high-energy triggering conditions and intense energy release prevent existing technologies from achieving safe, stable, and long-term continuous operation. Here, inspired by the traditional Chinese firecrackers, we propose a pulsed fusion reaction flywheel energy storage multi-reactor relay operation to drive the steam turbine to continuously and stably generate electricity for a long period of time; meanwhile, to install cleaning rotors in the cooling medium pipeline to enhance heat exchange, and to apply radiative cooling technology on the surface of the cooling tower to improve cooling efficiency and to reduce energy consumption, thereby improving system safety and overall energy efficiency. Proposing the combination of original technologies at both the hot end and the cold end of the system, we strive to open up a new way for controllable nuclear fusion power generation.\",\"PeriodicalId\":496532,\"journal\":{\"name\":\"Clean Energy Science and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Energy Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18686/cest.v1i1.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18686/cest.v1i1.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dawn of clean energy: Enhanced heat transfer, radiative cooling, and firecracker-style controlled nuclear fusion power generation system
Global climate change has become a major environmental threat and development challenge facing humanity. Controllable nuclear fusion is a globally recognized ideal solution for clean energy, but its required high-energy triggering conditions and intense energy release prevent existing technologies from achieving safe, stable, and long-term continuous operation. Here, inspired by the traditional Chinese firecrackers, we propose a pulsed fusion reaction flywheel energy storage multi-reactor relay operation to drive the steam turbine to continuously and stably generate electricity for a long period of time; meanwhile, to install cleaning rotors in the cooling medium pipeline to enhance heat exchange, and to apply radiative cooling technology on the surface of the cooling tower to improve cooling efficiency and to reduce energy consumption, thereby improving system safety and overall energy efficiency. Proposing the combination of original technologies at both the hot end and the cold end of the system, we strive to open up a new way for controllable nuclear fusion power generation.