2层k-平面图密度,交叉引理,关系和路径宽度

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Patrizio Angelini, Giordano Da Lozzo, Henry Förster, Thomas Schneck
{"title":"2层k-平面图密度,交叉引理,关系和路径宽度","authors":"Patrizio Angelini, Giordano Da Lozzo, Henry Förster, Thomas Schneck","doi":"10.1093/comjnl/bxad038","DOIUrl":null,"url":null,"abstract":"Abstract The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs where vertices of the two parts lie on two horizontal lines and edges lie between these lines. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\\in \\{2,3,4,5\\}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$ while there are also $2$-layer $k$-planar graphs with pathwidth at least $(k+3)/2$.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"1 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Layer <i>k</i>-Planar Graphs Density, Crossing Lemma, Relationships And Pathwidth\",\"authors\":\"Patrizio Angelini, Giordano Da Lozzo, Henry Förster, Thomas Schneck\",\"doi\":\"10.1093/comjnl/bxad038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs where vertices of the two parts lie on two horizontal lines and edges lie between these lines. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\\\\in \\\\{2,3,4,5\\\\}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$ while there are also $2$-layer $k$-planar graphs with pathwidth at least $(k+3)/2$.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comjnl/bxad038\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad038","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

$2$层绘图模型是一种成熟的二部图可视化范例,其中两个部分的顶点位于两条水平线上,边缘位于两条水平线之间。在此模型下,研究了几种超越平面的图类。然而,令人惊讶的是,在这种情况下,k -平面图的基本类只在k=1时才被考虑。我们提供了几个贡献,以解决这一差距的文献。首先,我们展示了$k\ \in \{2,3,4,5\}$的$2$-层$k$-平面图类的紧密密度界。基于这些结果,我们提供了一个2层k图的交叉引理,从而暗示了2层k图的一般密度界。我们用相应的下界构造证明了这个界是几乎最优的。最后,我们研究了$k$-平面性和$h$-拟平面性在$2$层模型中的关系,并证明$2$层$k$-平面图的路径宽度最多为$k+1$,同时也存在$2$层$k$-平面图的路径宽度至少为$(k+3)/2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Layer k-Planar Graphs Density, Crossing Lemma, Relationships And Pathwidth
Abstract The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs where vertices of the two parts lie on two horizontal lines and edges lie between these lines. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\in \{2,3,4,5\}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$ while there are also $2$-layer $k$-planar graphs with pathwidth at least $(k+3)/2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信