Lei Cao, Zhiheng Xie, Tianyu Liu, Zijian Wang, Chunjiang Fan
{"title":"基于深度学习框架的慢性阻塞性肺疾病康复运动评估","authors":"Lei Cao, Zhiheng Xie, Tianyu Liu, Zijian Wang, Chunjiang Fan","doi":"10.1142/s0219519423400894","DOIUrl":null,"url":null,"abstract":"Chronic obstructive pulmonary disease (COPD), which has a high prevalence and mortality rate, is an irreversible condition marked by airflow restriction with different degrees of reversible damage. Notably, there is no cure for COPD, whose treatment primarily relies on rehabilitation exercises to improve airflow limitation. In this paper, a vision-based rehabilitation exercise efficacy prediction system is proposed to assess the efficacy of rehabilitation training for COPD patients. A camera was utilized to capture rehabilitation training videos of COPD patients, and we also collected various physical indicators. In addition, we used clustering algorithm to divide patients with different rehabilitation effects for subsequent progression analysis. Our model achieved a classification of rehabilitation progress accuracy of 90.6%, making it possible to effectively obtain favorable rehabilitation training results without physician supervision. It was meaningful for helping COPD patients get effective feedback when training alone.","PeriodicalId":50135,"journal":{"name":"Journal of Mechanics in Medicine and Biology","volume":"19 9","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning framework-based exercise assessment for rehabilitation of chronic obstructive pulmonary disease\",\"authors\":\"Lei Cao, Zhiheng Xie, Tianyu Liu, Zijian Wang, Chunjiang Fan\",\"doi\":\"10.1142/s0219519423400894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic obstructive pulmonary disease (COPD), which has a high prevalence and mortality rate, is an irreversible condition marked by airflow restriction with different degrees of reversible damage. Notably, there is no cure for COPD, whose treatment primarily relies on rehabilitation exercises to improve airflow limitation. In this paper, a vision-based rehabilitation exercise efficacy prediction system is proposed to assess the efficacy of rehabilitation training for COPD patients. A camera was utilized to capture rehabilitation training videos of COPD patients, and we also collected various physical indicators. In addition, we used clustering algorithm to divide patients with different rehabilitation effects for subsequent progression analysis. Our model achieved a classification of rehabilitation progress accuracy of 90.6%, making it possible to effectively obtain favorable rehabilitation training results without physician supervision. It was meaningful for helping COPD patients get effective feedback when training alone.\",\"PeriodicalId\":50135,\"journal\":{\"name\":\"Journal of Mechanics in Medicine and Biology\",\"volume\":\"19 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219519423400894\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219519423400894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A deep learning framework-based exercise assessment for rehabilitation of chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD), which has a high prevalence and mortality rate, is an irreversible condition marked by airflow restriction with different degrees of reversible damage. Notably, there is no cure for COPD, whose treatment primarily relies on rehabilitation exercises to improve airflow limitation. In this paper, a vision-based rehabilitation exercise efficacy prediction system is proposed to assess the efficacy of rehabilitation training for COPD patients. A camera was utilized to capture rehabilitation training videos of COPD patients, and we also collected various physical indicators. In addition, we used clustering algorithm to divide patients with different rehabilitation effects for subsequent progression analysis. Our model achieved a classification of rehabilitation progress accuracy of 90.6%, making it possible to effectively obtain favorable rehabilitation training results without physician supervision. It was meaningful for helping COPD patients get effective feedback when training alone.
期刊介绍:
This journal has as its objective the publication and dissemination of original research (even for "revolutionary concepts that contrast with existing theories" & "hypothesis") in all fields of engineering-mechanics that includes mechanisms, processes, bio-sensors and bio-devices in medicine, biology and healthcare. The journal publishes original papers in English which contribute to an understanding of biomedical engineering and science at a nano- to macro-scale or an improvement of the methods and techniques of medical, biological and clinical treatment by the application of advanced high technology.
Journal''s Research Scopes/Topics Covered (but not limited to):
Artificial Organs, Biomechanics of Organs.
Biofluid Mechanics, Biorheology, Blood Flow Measurement Techniques, Microcirculation, Hemodynamics.
Bioheat Transfer and Mass Transport, Nano Heat Transfer.
Biomaterials.
Biomechanics & Modeling of Cell and Molecular.
Biomedical Instrumentation and BioSensors that implicate ''human mechanics'' in details.
Biomedical Signal Processing Techniques that implicate ''human mechanics'' in details.
Bio-Microelectromechanical Systems, Microfluidics.
Bio-Nanotechnology and Clinical Application.
Bird and Insect Aerodynamics.
Cardiovascular/Cardiac mechanics.
Cardiovascular Systems Physiology/Engineering.
Cellular and Tissue Mechanics/Engineering.
Computational Biomechanics/Physiological Modelling, Systems Physiology.
Clinical Biomechanics.
Hearing Mechanics.
Human Movement and Animal Locomotion.
Implant Design and Mechanics.
Mathematical modeling.
Mechanobiology of Diseases.
Mechanics of Medical Robotics.
Muscle/Neuromuscular/Musculoskeletal Mechanics and Engineering.
Neural- & Neuro-Behavioral Engineering.
Orthopedic Biomechanics.
Reproductive and Urogynecological Mechanics.
Respiratory System Engineering...