{"title":"基于多源数据融合的域自适应TSK模糊系统在癫痫脑电信号分类中的应用","authors":"Zaihe Cheng, Guohua Zhou","doi":"10.1142/s0219519423400900","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning methods based on epileptic signals have shown good results with brain-computer interfaces (BCIs). With the continuous expansion of their applications, the demand for labeled epileptic signals is increasing. For a large number of data-driven models, such signals are not suitable, as they extend the calibration cycle. Therefore, a new domain-adaptive TSK fuzzy system model based on multisource data fusion (DA-TSK) is proposed. The purpose of DA-TSK is to maintain high classification performance when the amount of labeled data is insufficient. The DA-TSK model not only has a strong learning ability to learn characteristic information from EEG data but is also interpretable, which aids in the understanding of the analytic process of the model for medical purposes. In particular, this model can make full use of a small amount of labeled EEG data in the source domain and target domain through domain adaptation. Therefore, the DA-TSK model can reduce data dependence to a certain extent and improve the generalization performance of the target classifier. Experiments are performed to evaluate the effectiveness of the DA-TSK model on public EEG datasets based on epileptic signals. The DA-TSK model can obtain satisfactory accuracy when the labeled data are insufficient in the target domain.","PeriodicalId":50135,"journal":{"name":"Journal of Mechanics in Medicine and Biology","volume":"13 2","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain-adaptive TSK fuzzy system based on multisource data fusion for epileptic EEG signal classification\",\"authors\":\"Zaihe Cheng, Guohua Zhou\",\"doi\":\"10.1142/s0219519423400900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, machine learning methods based on epileptic signals have shown good results with brain-computer interfaces (BCIs). With the continuous expansion of their applications, the demand for labeled epileptic signals is increasing. For a large number of data-driven models, such signals are not suitable, as they extend the calibration cycle. Therefore, a new domain-adaptive TSK fuzzy system model based on multisource data fusion (DA-TSK) is proposed. The purpose of DA-TSK is to maintain high classification performance when the amount of labeled data is insufficient. The DA-TSK model not only has a strong learning ability to learn characteristic information from EEG data but is also interpretable, which aids in the understanding of the analytic process of the model for medical purposes. In particular, this model can make full use of a small amount of labeled EEG data in the source domain and target domain through domain adaptation. Therefore, the DA-TSK model can reduce data dependence to a certain extent and improve the generalization performance of the target classifier. Experiments are performed to evaluate the effectiveness of the DA-TSK model on public EEG datasets based on epileptic signals. The DA-TSK model can obtain satisfactory accuracy when the labeled data are insufficient in the target domain.\",\"PeriodicalId\":50135,\"journal\":{\"name\":\"Journal of Mechanics in Medicine and Biology\",\"volume\":\"13 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219519423400900\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219519423400900","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Domain-adaptive TSK fuzzy system based on multisource data fusion for epileptic EEG signal classification
In recent years, machine learning methods based on epileptic signals have shown good results with brain-computer interfaces (BCIs). With the continuous expansion of their applications, the demand for labeled epileptic signals is increasing. For a large number of data-driven models, such signals are not suitable, as they extend the calibration cycle. Therefore, a new domain-adaptive TSK fuzzy system model based on multisource data fusion (DA-TSK) is proposed. The purpose of DA-TSK is to maintain high classification performance when the amount of labeled data is insufficient. The DA-TSK model not only has a strong learning ability to learn characteristic information from EEG data but is also interpretable, which aids in the understanding of the analytic process of the model for medical purposes. In particular, this model can make full use of a small amount of labeled EEG data in the source domain and target domain through domain adaptation. Therefore, the DA-TSK model can reduce data dependence to a certain extent and improve the generalization performance of the target classifier. Experiments are performed to evaluate the effectiveness of the DA-TSK model on public EEG datasets based on epileptic signals. The DA-TSK model can obtain satisfactory accuracy when the labeled data are insufficient in the target domain.
期刊介绍:
This journal has as its objective the publication and dissemination of original research (even for "revolutionary concepts that contrast with existing theories" & "hypothesis") in all fields of engineering-mechanics that includes mechanisms, processes, bio-sensors and bio-devices in medicine, biology and healthcare. The journal publishes original papers in English which contribute to an understanding of biomedical engineering and science at a nano- to macro-scale or an improvement of the methods and techniques of medical, biological and clinical treatment by the application of advanced high technology.
Journal''s Research Scopes/Topics Covered (but not limited to):
Artificial Organs, Biomechanics of Organs.
Biofluid Mechanics, Biorheology, Blood Flow Measurement Techniques, Microcirculation, Hemodynamics.
Bioheat Transfer and Mass Transport, Nano Heat Transfer.
Biomaterials.
Biomechanics & Modeling of Cell and Molecular.
Biomedical Instrumentation and BioSensors that implicate ''human mechanics'' in details.
Biomedical Signal Processing Techniques that implicate ''human mechanics'' in details.
Bio-Microelectromechanical Systems, Microfluidics.
Bio-Nanotechnology and Clinical Application.
Bird and Insect Aerodynamics.
Cardiovascular/Cardiac mechanics.
Cardiovascular Systems Physiology/Engineering.
Cellular and Tissue Mechanics/Engineering.
Computational Biomechanics/Physiological Modelling, Systems Physiology.
Clinical Biomechanics.
Hearing Mechanics.
Human Movement and Animal Locomotion.
Implant Design and Mechanics.
Mathematical modeling.
Mechanobiology of Diseases.
Mechanics of Medical Robotics.
Muscle/Neuromuscular/Musculoskeletal Mechanics and Engineering.
Neural- & Neuro-Behavioral Engineering.
Orthopedic Biomechanics.
Reproductive and Urogynecological Mechanics.
Respiratory System Engineering...