Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic
{"title":"忆阻器元件非线性离子漂移新模型及其通用模拟可重构实现","authors":"Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic","doi":"10.1142/s0218126624501135","DOIUrl":null,"url":null,"abstract":"While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"37 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Nonlinear Ion Drift Model of Memristor Element and its Versatile Analog Reconfigurable Realizations Realizations\",\"authors\":\"Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic\",\"doi\":\"10.1142/s0218126624501135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624501135\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624501135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A New Nonlinear Ion Drift Model of Memristor Element and its Versatile Analog Reconfigurable Realizations Realizations
While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.