忆阻器元件非线性离子漂移新模型及其通用模拟可重构实现

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic
{"title":"忆阻器元件非线性离子漂移新模型及其通用模拟可重构实现","authors":"Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic","doi":"10.1142/s0218126624501135","DOIUrl":null,"url":null,"abstract":"While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"37 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Nonlinear Ion Drift Model of Memristor Element and its Versatile Analog Reconfigurable Realizations Realizations\",\"authors\":\"Jean Luck Randrianantenaina, Ahmet Yasin Baran, Nimet Korkmaz, Recai Kilic\",\"doi\":\"10.1142/s0218126624501135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624501135\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624501135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

用多项式函数定义窗函数是研究忆阻器元件的一种初步方法,但容易产生虚结果。然而,使用窗函数,包括三角函数,是目前研究忆阻器元件的一个领域。本文利用三角布莱克曼窗函数提出了一种新的忆阻元件模型,并研究了其非线性离子漂移模型的性质。本研究的动机是使用三角Blackman窗函数,它提供了更详细的定义,并导致更准确的窗口操作结果。Blackman窗口函数可以解决边界锁定和终端状态问题。数值模拟验证了该结构的有效性。此外,用Blackman窗口函数构建的忆阻器元件的模拟实现已经在现场可编程模拟阵列上实现,该阵列提供了快速原型,作为模拟忆阻器的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Nonlinear Ion Drift Model of Memristor Element and its Versatile Analog Reconfigurable Realizations Realizations
While using polynomial functions to define window functions is an initial approach in studying the memristor element, it is susceptible to generating imaginary results. However, using window functions, including the trigonometric function, is a current field of research on the memristor element. This paper uses the trigonometric Blackman window function to present a new memristor element model and investigates its nonlinear ion drift model properties. The motivation of this study is the usage of the trigonometric Blackman window function, which presents a more detailed definition and leads to more accurate results in windowing operations. The Blackman window function can address the issues of border locking and terminal state. Numerical simulations have verified this proposed structure. Additionally, the analog realizations of the memristor element constructed with the Blackman window function have been achieved on a Field Programmable Analog Array, which offers fast prototyping, serving as an alternative approach for emulating memristors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Circuits Systems and Computers
Journal of Circuits Systems and Computers 工程技术-工程:电子与电气
CiteScore
2.80
自引率
26.70%
发文量
350
审稿时长
5.4 months
期刊介绍: Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections: Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality. Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信