具有完全正则生长性质的全系数高阶齐次线性微分方程的无穷阶解及有界分量法头集

Ayad W. Ali, Abdul Khaleq O. Al Jubory
{"title":"具有完全正则生长性质的全系数高阶齐次线性微分方程的无穷阶解及有界分量法头集","authors":"Ayad W. Ali, Abdul Khaleq O. Al Jubory","doi":"10.15379/ijmst.v10i1.2856","DOIUrl":null,"url":null,"abstract":"The homogeneous higher order complex linear differential equations (n-thCLDEs) with entire functions is considered in this paper. We investigated some conditions that can be put on the coefficients which guarantee that any nonzero solution of such equations has infinite order. The conditions we stated are the completely regular growth (CRG), the characteristic function of some coefficients is approximately equals to the logarithm of its maximum modulus and the Denjoy’s conjecture (DC) property.","PeriodicalId":499708,"journal":{"name":"International journal of membrane science and technology","volume":"38 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite Order of The Solutions of Higher Order Homogeneous Linear Differential Equations with Entire Coefficients Having Completely Regular Growth Property and Bounded Components Fatou Set\",\"authors\":\"Ayad W. Ali, Abdul Khaleq O. Al Jubory\",\"doi\":\"10.15379/ijmst.v10i1.2856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The homogeneous higher order complex linear differential equations (n-thCLDEs) with entire functions is considered in this paper. We investigated some conditions that can be put on the coefficients which guarantee that any nonzero solution of such equations has infinite order. The conditions we stated are the completely regular growth (CRG), the characteristic function of some coefficients is approximately equals to the logarithm of its maximum modulus and the Denjoy’s conjecture (DC) property.\",\"PeriodicalId\":499708,\"journal\":{\"name\":\"International journal of membrane science and technology\",\"volume\":\"38 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of membrane science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15379/ijmst.v10i1.2856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of membrane science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15379/ijmst.v10i1.2856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有全函数的齐次高阶复线性微分方程。我们研究了保证这类方程的任何非零解具有无限阶的系数的若干条件。我们给出的条件是完全正则增长(CRG),某些系数的特征函数近似等于其最大模量的对数和Denjoy猜想(DC)性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Order of The Solutions of Higher Order Homogeneous Linear Differential Equations with Entire Coefficients Having Completely Regular Growth Property and Bounded Components Fatou Set
The homogeneous higher order complex linear differential equations (n-thCLDEs) with entire functions is considered in this paper. We investigated some conditions that can be put on the coefficients which guarantee that any nonzero solution of such equations has infinite order. The conditions we stated are the completely regular growth (CRG), the characteristic function of some coefficients is approximately equals to the logarithm of its maximum modulus and the Denjoy’s conjecture (DC) property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信