多场景虚拟同步发电机LSTM数据驱动模型

Jiangbin Tian, Guohui Zeng, Zhenhua Zhang, Yuzong Wang, Jinbin Zhao, Xiangchen Zhu
{"title":"多场景虚拟同步发电机LSTM数据驱动模型","authors":"Jiangbin Tian, Guohui Zeng, Zhenhua Zhang, Yuzong Wang, Jinbin Zhao, Xiangchen Zhu","doi":"10.23919/epe23ecceeurope58414.2023.10264612","DOIUrl":null,"url":null,"abstract":"This paper proposes a data-driven modeling approach using LSTM to accurately describe the dynamic characteristics of Virtual Synchronous Generator (VSG) systems. VSG technology allows grid-connected inverters to resemble synchronous generators externally. However, the commonly used small-signal model faces challenges in capturing the complexity of VSG systems, particularly in complex scenarios. The proposed LSTM-based data-driven model considers the impact of irrational factors, providing accurate and stable VSG system modeling. Experimental results demonstrate the superiority of the LSTM neural network-based data-driven VSG model over the small-signal model and typical data-driven models in terms of accuracy and stability.","PeriodicalId":0,"journal":{"name":"","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM Data-Driven Model of Multi-scene Virtual Synchronous Generator\",\"authors\":\"Jiangbin Tian, Guohui Zeng, Zhenhua Zhang, Yuzong Wang, Jinbin Zhao, Xiangchen Zhu\",\"doi\":\"10.23919/epe23ecceeurope58414.2023.10264612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a data-driven modeling approach using LSTM to accurately describe the dynamic characteristics of Virtual Synchronous Generator (VSG) systems. VSG technology allows grid-connected inverters to resemble synchronous generators externally. However, the commonly used small-signal model faces challenges in capturing the complexity of VSG systems, particularly in complex scenarios. The proposed LSTM-based data-driven model considers the impact of irrational factors, providing accurate and stable VSG system modeling. Experimental results demonstrate the superiority of the LSTM neural network-based data-driven VSG model over the small-signal model and typical data-driven models in terms of accuracy and stability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/epe23ecceeurope58414.2023.10264612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/epe23ecceeurope58414.2023.10264612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于LSTM的数据驱动建模方法,以准确描述虚拟同步发电机系统的动态特性。VSG技术允许并网逆变器在外部类似于同步发电机。然而,常用的小信号模型在捕获VSG系统的复杂性方面面临挑战,特别是在复杂的场景中。提出的基于lstm的数据驱动模型考虑了不合理因素的影响,提供了准确稳定的VSG系统建模。实验结果表明,基于LSTM神经网络的数据驱动VSG模型在精度和稳定性方面优于小信号模型和典型的数据驱动模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
LSTM Data-Driven Model of Multi-scene Virtual Synchronous Generator
This paper proposes a data-driven modeling approach using LSTM to accurately describe the dynamic characteristics of Virtual Synchronous Generator (VSG) systems. VSG technology allows grid-connected inverters to resemble synchronous generators externally. However, the commonly used small-signal model faces challenges in capturing the complexity of VSG systems, particularly in complex scenarios. The proposed LSTM-based data-driven model considers the impact of irrational factors, providing accurate and stable VSG system modeling. Experimental results demonstrate the superiority of the LSTM neural network-based data-driven VSG model over the small-signal model and typical data-driven models in terms of accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信