使用压缩沙漏网和变压器的轻量级边界感知人脸对齐

IF 3.2 Q1 Computer Science
Wenhui Wang, Yingxin Li, Ziqiang Li, Jingliang Peng
{"title":"使用压缩沙漏网和变压器的轻量级边界感知人脸对齐","authors":"Wenhui Wang, Yingxin Li, Ziqiang Li, Jingliang Peng","doi":"10.1561/116.00000059","DOIUrl":null,"url":null,"abstract":"In this work, we focus on lightweight and accurate face alignment. For that purpose, we propose an algorithm design that promotes a most recently published face alignment method in terms of model size and computing cost while maintaining high accuracy of face alignment. Specifically, we construct a lightweight two-stage neural network. The first stage estimates boundary heatmaps on the facial region, which are then used to guide the facial landmark position prediction in the second stage. For the first stage, we compress an HourglassNet-based structure by reducing the numbers of feature channels and convolutional kernels and optimizing the structure of Hourglass block by ShuffleNet modules. For the second stage, we compress the subnet by utilizing DeLighT, a recently published lightweight version of Transformer. Experimental results on several standard facial landmark detection datasets show that the proposed algorithm achieves sharp advances in model compactness and computing efficiency while keeping a state-of-the-art level of accuracy in facial landmark detection.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":"68 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Boundary-Aware Face Alignment with Compressed HourglassNet and Transformer\",\"authors\":\"Wenhui Wang, Yingxin Li, Ziqiang Li, Jingliang Peng\",\"doi\":\"10.1561/116.00000059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus on lightweight and accurate face alignment. For that purpose, we propose an algorithm design that promotes a most recently published face alignment method in terms of model size and computing cost while maintaining high accuracy of face alignment. Specifically, we construct a lightweight two-stage neural network. The first stage estimates boundary heatmaps on the facial region, which are then used to guide the facial landmark position prediction in the second stage. For the first stage, we compress an HourglassNet-based structure by reducing the numbers of feature channels and convolutional kernels and optimizing the structure of Hourglass block by ShuffleNet modules. For the second stage, we compress the subnet by utilizing DeLighT, a recently published lightweight version of Transformer. Experimental results on several standard facial landmark detection datasets show that the proposed algorithm achieves sharp advances in model compactness and computing efficiency while keeping a state-of-the-art level of accuracy in facial landmark detection.\",\"PeriodicalId\":44812,\"journal\":{\"name\":\"APSIPA Transactions on Signal and Information Processing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APSIPA Transactions on Signal and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/116.00000059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/116.00000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Boundary-Aware Face Alignment with Compressed HourglassNet and Transformer
In this work, we focus on lightweight and accurate face alignment. For that purpose, we propose an algorithm design that promotes a most recently published face alignment method in terms of model size and computing cost while maintaining high accuracy of face alignment. Specifically, we construct a lightweight two-stage neural network. The first stage estimates boundary heatmaps on the facial region, which are then used to guide the facial landmark position prediction in the second stage. For the first stage, we compress an HourglassNet-based structure by reducing the numbers of feature channels and convolutional kernels and optimizing the structure of Hourglass block by ShuffleNet modules. For the second stage, we compress the subnet by utilizing DeLighT, a recently published lightweight version of Transformer. Experimental results on several standard facial landmark detection datasets show that the proposed algorithm achieves sharp advances in model compactness and computing efficiency while keeping a state-of-the-art level of accuracy in facial landmark detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信