Rong Luo, Ruonan Hu, Jiawei Xu, Peiyun Yu, Xinyu Wu, Man Zhe, Ming Liu, Fei Xing, Zhou Xiang, Changchun Zhou, Yujiang Fan, Xingdong Zhang
{"title":"脱细胞细胞外基质是一种很有前途的肌肉骨骼组织再生生物材料","authors":"Rong Luo, Ruonan Hu, Jiawei Xu, Peiyun Yu, Xinyu Wu, Man Zhe, Ming Liu, Fei Xing, Zhou Xiang, Changchun Zhou, Yujiang Fan, Xingdong Zhang","doi":"10.1515/ntrev-2023-0151","DOIUrl":null,"url":null,"abstract":"Abstract The emergence of tissue engineering provides an alternative therapeutic strategy for various regeneration. It is the crucial step for choosing an ideal scaffold to support the cellular behaviors of various functional cells. Various biomaterials have been found or synthesized and applied to tissue repair. Among these biomaterials, as a natural-derived material, decellularized extracellular matrix (dECM) derived from cells, tissues, and organs is attracting more and more interest due to its good biocompatibility, biodegradability, and the ability to mimic a microenvironment similar to extracellular matrix. More and more researchers utilized dECM derived from cells, tissues, and organs to fabricate tissue-engineered scaffolds to repair musculoskeletal tissues, since the bioactive molecules of dECM, such as fibrous proteins, proteoglycans, and adhesive glycoproteins, could provide various bioactive cues for tissue regeneration and remodeling. The physiochemical properties of dECM can be enhanced by changing decellularization and modification techniques. In addition, dECM can act as carriers of drugs, factors, or exosomes, delivering agents to injured tissues and promoting tissue repair and regeneration. Therefore, we conduct this review to discuss the current status and challenges of dECM in repairing the musculoskeletal system. Furthermore, the fabrication and modification of dECM were also discussed in our study.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"68 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decellularized extracellular matrix as a promising biomaterial for musculoskeletal tissue regeneration\",\"authors\":\"Rong Luo, Ruonan Hu, Jiawei Xu, Peiyun Yu, Xinyu Wu, Man Zhe, Ming Liu, Fei Xing, Zhou Xiang, Changchun Zhou, Yujiang Fan, Xingdong Zhang\",\"doi\":\"10.1515/ntrev-2023-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The emergence of tissue engineering provides an alternative therapeutic strategy for various regeneration. It is the crucial step for choosing an ideal scaffold to support the cellular behaviors of various functional cells. Various biomaterials have been found or synthesized and applied to tissue repair. Among these biomaterials, as a natural-derived material, decellularized extracellular matrix (dECM) derived from cells, tissues, and organs is attracting more and more interest due to its good biocompatibility, biodegradability, and the ability to mimic a microenvironment similar to extracellular matrix. More and more researchers utilized dECM derived from cells, tissues, and organs to fabricate tissue-engineered scaffolds to repair musculoskeletal tissues, since the bioactive molecules of dECM, such as fibrous proteins, proteoglycans, and adhesive glycoproteins, could provide various bioactive cues for tissue regeneration and remodeling. The physiochemical properties of dECM can be enhanced by changing decellularization and modification techniques. In addition, dECM can act as carriers of drugs, factors, or exosomes, delivering agents to injured tissues and promoting tissue repair and regeneration. Therefore, we conduct this review to discuss the current status and challenges of dECM in repairing the musculoskeletal system. Furthermore, the fabrication and modification of dECM were also discussed in our study.\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2023-0151\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ntrev-2023-0151","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Decellularized extracellular matrix as a promising biomaterial for musculoskeletal tissue regeneration
Abstract The emergence of tissue engineering provides an alternative therapeutic strategy for various regeneration. It is the crucial step for choosing an ideal scaffold to support the cellular behaviors of various functional cells. Various biomaterials have been found or synthesized and applied to tissue repair. Among these biomaterials, as a natural-derived material, decellularized extracellular matrix (dECM) derived from cells, tissues, and organs is attracting more and more interest due to its good biocompatibility, biodegradability, and the ability to mimic a microenvironment similar to extracellular matrix. More and more researchers utilized dECM derived from cells, tissues, and organs to fabricate tissue-engineered scaffolds to repair musculoskeletal tissues, since the bioactive molecules of dECM, such as fibrous proteins, proteoglycans, and adhesive glycoproteins, could provide various bioactive cues for tissue regeneration and remodeling. The physiochemical properties of dECM can be enhanced by changing decellularization and modification techniques. In addition, dECM can act as carriers of drugs, factors, or exosomes, delivering agents to injured tissues and promoting tissue repair and regeneration. Therefore, we conduct this review to discuss the current status and challenges of dECM in repairing the musculoskeletal system. Furthermore, the fabrication and modification of dECM were also discussed in our study.
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.