{"title":"局部紧阿贝尔波群诱导的等价关系","authors":"LONGYUN DING, YANG ZHENG","doi":"10.1017/jsl.2023.35","DOIUrl":null,"url":null,"abstract":"Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\\rightarrow H_0$ such that $\\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\\in {\\mathbb {N}}^+$ , the partially ordered set $P(\\omega )/\\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\\mathbb {R}}^n)$ and $E({\\mathbb {T}}^n)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON EQUIVALENCE RELATIONS INDUCED BY LOCALLY COMPACT ABELIAN POLISH GROUPS\",\"authors\":\"LONGYUN DING, YANG ZHENG\",\"doi\":\"10.1017/jsl.2023.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\\\\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\\\\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\\\\rightarrow H_0$ such that $\\\\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\\\\in {\\\\mathbb {N}}^+$ , the partially ordered set $P(\\\\omega )/\\\\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\\\\mathbb {R}}^n)$ and $E({\\\\mathbb {T}}^n)$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON EQUIVALENCE RELATIONS INDUCED BY LOCALLY COMPACT ABELIAN POLISH GROUPS
Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\rightarrow H_0$ such that $\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\in {\mathbb {N}}^+$ , the partially ordered set $P(\omega )/\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\mathbb {R}}^n)$ and $E({\mathbb {T}}^n)$ .