局部紧阿贝尔波群诱导的等价关系

Pub Date : 2023-06-07 DOI:10.1017/jsl.2023.35
LONGYUN DING, YANG ZHENG
{"title":"局部紧阿贝尔波群诱导的等价关系","authors":"LONGYUN DING, YANG ZHENG","doi":"10.1017/jsl.2023.35","DOIUrl":null,"url":null,"abstract":"Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\\rightarrow H_0$ such that $\\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\\in {\\mathbb {N}}^+$ , the partially ordered set $P(\\omega )/\\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\\mathbb {R}}^n)$ and $E({\\mathbb {T}}^n)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON EQUIVALENCE RELATIONS INDUCED BY LOCALLY COMPACT ABELIAN POLISH GROUPS\",\"authors\":\"LONGYUN DING, YANG ZHENG\",\"doi\":\"10.1017/jsl.2023.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\\\\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\\\\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\\\\rightarrow H_0$ such that $\\\\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\\\\in {\\\\mathbb {N}}^+$ , the partially ordered set $P(\\\\omega )/\\\\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\\\\mathbb {R}}^n)$ and $E({\\\\mathbb {T}}^n)$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要给定一个波兰群G,设$E(G)$为右余集等价关系$G^{\omega }/c(G)$,其中$c(G)$为G中所有收敛序列的群。波兰群G的身份的连通成分用$G_0$表示。设$G,H$为局部紧致阿贝尔波兰群。如果$E(G)\leq _B E(H)$,那么有一个连续同态$S:G_0\rightarrow H_0$使得$\ker (S)$是非阿基米德的。当G是连通且紧致的,反之也成立。对于$n\in {\mathbb {N}}^+$,偏序集$P(\omega )/\mbox {Fin}$可以嵌入到$E({\mathbb {R}}^n)$和$E({\mathbb {T}}^n)$之间的Borel等价关系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON EQUIVALENCE RELATIONS INDUCED BY LOCALLY COMPACT ABELIAN POLISH GROUPS
Abstract Given a Polish group G , let $E(G)$ be the right coset equivalence relation $G^{\omega }/c(G)$ , where $c(G)$ is the group of all convergent sequences in G . The connected component of the identity of a Polish group G is denoted by $G_0$ . Let $G,H$ be locally compact abelian Polish groups. If $E(G)\leq _B E(H)$ , then there is a continuous homomorphism $S:G_0\rightarrow H_0$ such that $\ker (S)$ is non-archimedean. The converse is also true when G is connected and compact. For $n\in {\mathbb {N}}^+$ , the partially ordered set $P(\omega )/\mbox {Fin}$ can be embedded into Borel equivalence relations between $E({\mathbb {R}}^n)$ and $E({\mathbb {T}}^n)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信