bean分类使用决策树和随机森林进行随机搜索,并进行超参数调优

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"bean分类使用决策树和随机森林进行随机搜索,并进行超参数调优","authors":"","doi":"10.28919/cmbn/8225","DOIUrl":null,"url":null,"abstract":"Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"32 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beans classification using decision tree and random forest with randomized search hyperparameter tuning\",\"authors\":\"\",\"doi\":\"10.28919/cmbn/8225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.\",\"PeriodicalId\":44079,\"journal\":{\"name\":\"Communications in Mathematical Biology and Neuroscience\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Biology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cmbn/8225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

干豆是一种高蛋白食物。在饥荒、自然灾害和战争等紧急情况下,干豆可以作为加工食品使用。干豆可以作为一种长效产品使用。为了识别bean的类型,手工工作当然需要大量的时间和精力。因此,创建一个能够在计算机化系统中对bean进行分类的系统是必要的。在这项研究中,我们使用来自Koklu的公开数据对豆类进行分类。该数据由16个特征、7个类和13,611行组成。每一类bean的数据都是不平衡的,因此有必要使用随机过采样来实现平衡数据集。使用决策树和随机森林的机器学习分类。除此之外,使用随机搜索树数50、75、150、200和300进行超参数调优。测试结果表明,Random Forest的准确率、精密度、召回率和f1-score分别达到0.9658。树的最佳参数数为300。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beans classification using decision tree and random forest with randomized search hyperparameter tuning
Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信