{"title":"bean分类使用决策树和随机森林进行随机搜索,并进行超参数调优","authors":"","doi":"10.28919/cmbn/8225","DOIUrl":null,"url":null,"abstract":"Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"32 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beans classification using decision tree and random forest with randomized search hyperparameter tuning\",\"authors\":\"\",\"doi\":\"10.28919/cmbn/8225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.\",\"PeriodicalId\":44079,\"journal\":{\"name\":\"Communications in Mathematical Biology and Neuroscience\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Biology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cmbn/8225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Beans classification using decision tree and random forest with randomized search hyperparameter tuning
Dry-beans are a food with high protein. Dry-beans can be used as processed food products for emergency conditions such as famine, natural disasters, and war. Dry-beans can be used as a long-lasting product. To identify types of beans, manual work certainly requires a lot of time and effort. Therefore, creating a system that can classify beans in a computerized system is necessary. In this study, we classified beans using public data from Koklu. The data consists of sixteen features, seven classes with 13,611 rows. The data for each class of bean is unbalanced, so it is necessary to carry out a balanced dataset using random oversampling. Machine learning for classification using Decision Tree and Random Forest. Apart from that, hyperparameter tuning with randomize search for the number of trees 50, 75, 150, 200, and 300. The test results show that the Random Forest’s accuracy, precision, recall, and f1-score reach 0.9658 respectively. The best parameter number of trees is 300.
期刊介绍:
Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.