{"title":"氧化铁含渣熔融还原产生气泡的气泡直径分布及产生位置的测定","authors":"Ko-ichiro Ohno, Taiga Eguchi, Tatsuya Kon","doi":"10.2355/tetsutohagane.tetsu-2023-093","DOIUrl":null,"url":null,"abstract":"Slag foaming is a phenomenon caused by the generation of CO bubbles due to the reaction between iron oxide in slag and carbon in pig iron. The purpose of this study is to explore the controlling factors of slag foaming by observing the bubble formation behavior caused by the chemical reaction between iron oxide and Fe-C alloy in slag. 0.06 g of Fe-C alloy was charged to the bottom of the BN crucible, and 6.0 g of slag (SiO2:CaO:Fe2O3 = 40:40:30) was charged on top of it. The crucible was placed in an infrared image heating furnace, and the temperature was rapidly raised to 1370°C at a rate of 1000°C/min in a N2 stream, then held for a predetermined time and rapidly cooled. After rapidly cooling, the internal structure of the sample was observed using a high-resolution X-ray CT device. The spherical equivalent volume is calculated based on the number of bubbles observed and their equivalent circle diameter, and the relationship between the volume ratio of small bubbles in the slag volume and the distance from the bottom of the crucible is calculated, and the bubble density and volume ratio are calculated. It was suggested that the value tends to increase as the distance from the bottom of the crucible increases.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"295 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"酸化鉄含有スラグの溶融還元に伴う発生気泡の気泡径分布および発生位置の測定\",\"authors\":\"Ko-ichiro Ohno, Taiga Eguchi, Tatsuya Kon\",\"doi\":\"10.2355/tetsutohagane.tetsu-2023-093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slag foaming is a phenomenon caused by the generation of CO bubbles due to the reaction between iron oxide in slag and carbon in pig iron. The purpose of this study is to explore the controlling factors of slag foaming by observing the bubble formation behavior caused by the chemical reaction between iron oxide and Fe-C alloy in slag. 0.06 g of Fe-C alloy was charged to the bottom of the BN crucible, and 6.0 g of slag (SiO2:CaO:Fe2O3 = 40:40:30) was charged on top of it. The crucible was placed in an infrared image heating furnace, and the temperature was rapidly raised to 1370°C at a rate of 1000°C/min in a N2 stream, then held for a predetermined time and rapidly cooled. After rapidly cooling, the internal structure of the sample was observed using a high-resolution X-ray CT device. The spherical equivalent volume is calculated based on the number of bubbles observed and their equivalent circle diameter, and the relationship between the volume ratio of small bubbles in the slag volume and the distance from the bottom of the crucible is calculated, and the bubble density and volume ratio are calculated. It was suggested that the value tends to increase as the distance from the bottom of the crucible increases.\",\"PeriodicalId\":22340,\"journal\":{\"name\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2355/tetsutohagane.tetsu-2023-093\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-093","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
炉渣起泡是炉渣中的氧化铁与生铁中的碳发生反应产生CO气泡而产生的一种现象。本研究的目的是通过观察炉渣中氧化铁与Fe-C合金的化学反应形成气泡的行为,探讨炉渣起泡的控制因素。在BN坩埚底部充注0.06 g Fe-C合金,在坩埚顶部充注6.0 g炉渣(SiO2:CaO:Fe2O3 = 40:40:30)。将坩埚置于红外图像加热炉中,在N2流中以1000°C/min的速度快速升温至1370°C,然后保温一段预定时间并快速冷却。快速冷却后,使用高分辨率x射线CT设备观察样品的内部结构。根据观察到的气泡数及其等效圆直径计算出球形等效体积,计算出渣体积中小气泡的体积比与离坩埚底距离的关系,计算出气泡密度和体积比。随着离坩埚底距离的增加,该值有增大的趋势。
Slag foaming is a phenomenon caused by the generation of CO bubbles due to the reaction between iron oxide in slag and carbon in pig iron. The purpose of this study is to explore the controlling factors of slag foaming by observing the bubble formation behavior caused by the chemical reaction between iron oxide and Fe-C alloy in slag. 0.06 g of Fe-C alloy was charged to the bottom of the BN crucible, and 6.0 g of slag (SiO2:CaO:Fe2O3 = 40:40:30) was charged on top of it. The crucible was placed in an infrared image heating furnace, and the temperature was rapidly raised to 1370°C at a rate of 1000°C/min in a N2 stream, then held for a predetermined time and rapidly cooled. After rapidly cooling, the internal structure of the sample was observed using a high-resolution X-ray CT device. The spherical equivalent volume is calculated based on the number of bubbles observed and their equivalent circle diameter, and the relationship between the volume ratio of small bubbles in the slag volume and the distance from the bottom of the crucible is calculated, and the bubble density and volume ratio are calculated. It was suggested that the value tends to increase as the distance from the bottom of the crucible increases.
期刊介绍:
The journal ISIJ International first appeared in 1961 under the title Tetsu-to-Hagané Overseas. The title was changed in 1966 to Transactions of The Iron and Steel Institute of Japan and again in 1989 to the current ISIJ International.
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
Classification
I Fundamentals of High Temperature Processes
II Ironmaking
III Steelmaking
IV Casting and Solidification
V Instrumentation, Control, and System Engineering
VI Chemical and Physical Analysis
VII Forming Processing and Thermomechanical Treatment
VIII Welding and Joining
IX Surface Treatment and Corrosion
X Transformations and Microstructures
XI Mechanical Properties
XII Physical Properties
XIII New Materials and Processes
XIV Social and Environmental Engineering.