连铸坯中间包盖吹氩的数值模拟及应用

C.-H. Wu, Y. Li, Y-D. Liu, X. Xie, G.-R. Wu, M. Zhang
{"title":"连铸坯中间包盖吹氩的数值模拟及应用","authors":"C.-H. Wu, Y. Li, Y-D. Liu, X. Xie, G.-R. Wu, M. Zhang","doi":"10.2298/jmmb221027027w","DOIUrl":null,"url":null,"abstract":"During the continuous casting process, the remaining oxygen in the tundish can be significantly decreased by argon blowing from the tundish cover(ABTC). As a result, the effect of protective casting can be obviously improved, which helps decrease the reoxidation of molten steel in tundish. In the present work, numerical models for ABTC of a six-strand continuous casting machine were established and verified by the measured oxygen mass fraction in tundish during ABTC. The results indicate that the best conditions of ABTC are installing the argon pipes on either side of the tundish cover holes, sealing the baking holes, and keeping stopper rod holes open. The argon flow rate should be ?120m3/h during the period of empty tundish and ?60m3/h during the period of normal casting. Industrial trials of ABTC based on the calculation results were carried out. The results indicated that the increased nitrogen in steel(?w[N]) from the end of RH to tundish decreased by 21.5% from 8.78?10-6 to 6.89?10-6, and the amount of inclusions except for MnS in bloom (scanned size: 8mm?8mm) decreased by 21.3% from 13.43 to 10.57, and the average size of inclusions decreased by 19.0% from 9.27?m to 7.51?m.","PeriodicalId":16479,"journal":{"name":"Journal of Mining and Metallurgy, Section B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and application of argon blowing from tundish cover for bloom continuous casting\",\"authors\":\"C.-H. Wu, Y. Li, Y-D. Liu, X. Xie, G.-R. Wu, M. Zhang\",\"doi\":\"10.2298/jmmb221027027w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the continuous casting process, the remaining oxygen in the tundish can be significantly decreased by argon blowing from the tundish cover(ABTC). As a result, the effect of protective casting can be obviously improved, which helps decrease the reoxidation of molten steel in tundish. In the present work, numerical models for ABTC of a six-strand continuous casting machine were established and verified by the measured oxygen mass fraction in tundish during ABTC. The results indicate that the best conditions of ABTC are installing the argon pipes on either side of the tundish cover holes, sealing the baking holes, and keeping stopper rod holes open. The argon flow rate should be ?120m3/h during the period of empty tundish and ?60m3/h during the period of normal casting. Industrial trials of ABTC based on the calculation results were carried out. The results indicated that the increased nitrogen in steel(?w[N]) from the end of RH to tundish decreased by 21.5% from 8.78?10-6 to 6.89?10-6, and the amount of inclusions except for MnS in bloom (scanned size: 8mm?8mm) decreased by 21.3% from 13.43 to 10.57, and the average size of inclusions decreased by 19.0% from 9.27?m to 7.51?m.\",\"PeriodicalId\":16479,\"journal\":{\"name\":\"Journal of Mining and Metallurgy, Section B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy, Section B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb221027027w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy, Section B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/jmmb221027027w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在连铸过程中,采用中间包盖吹氩的方法可以显著降低中间包内的残余氧。保护浇注效果明显提高,有利于减少中间包钢液的再氧化。本文建立了六股连铸机ABTC的数值模型,并通过ABTC过程中中间包氧质量分数的测量进行了验证。结果表明,在中间包盖孔两侧安装氩气管、密封烘烤孔、保持塞杆孔打开是ABTC的最佳工艺条件。空中间包期间氩气流量为120m3/h,正常浇注期间氩气流量为60m3/h。根据计算结果进行了ABTC的工业试验。结果表明,从RH末端到中间包的钢中氮含量(?w[N])从8.78?10-6转到6.89?其中,除MnS外(扫描尺寸为8mm ~ 8mm)的夹杂物数量从13.43减少到10.57,减少了21.3%,夹杂物平均尺寸从9.27 ~ 8mm减少了19.0%。M到7.51? M。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation and application of argon blowing from tundish cover for bloom continuous casting
During the continuous casting process, the remaining oxygen in the tundish can be significantly decreased by argon blowing from the tundish cover(ABTC). As a result, the effect of protective casting can be obviously improved, which helps decrease the reoxidation of molten steel in tundish. In the present work, numerical models for ABTC of a six-strand continuous casting machine were established and verified by the measured oxygen mass fraction in tundish during ABTC. The results indicate that the best conditions of ABTC are installing the argon pipes on either side of the tundish cover holes, sealing the baking holes, and keeping stopper rod holes open. The argon flow rate should be ?120m3/h during the period of empty tundish and ?60m3/h during the period of normal casting. Industrial trials of ABTC based on the calculation results were carried out. The results indicated that the increased nitrogen in steel(?w[N]) from the end of RH to tundish decreased by 21.5% from 8.78?10-6 to 6.89?10-6, and the amount of inclusions except for MnS in bloom (scanned size: 8mm?8mm) decreased by 21.3% from 13.43 to 10.57, and the average size of inclusions decreased by 19.0% from 9.27?m to 7.51?m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信