关于正态分布的自由lsm测度

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Takahiro Hasebe, Yuki Ueda
{"title":"关于正态分布的自由lsm测度","authors":"Takahiro Hasebe, Yuki Ueda","doi":"10.1214/23-ejp1035","DOIUrl":null,"url":null,"abstract":"Belinschi et al. [Adv. Math., 226 (2011)] proved that the normal distribution is freely infinitely divisible. This paper establishes a certain monotonicity, real analyticity and asymptotic behavior of the density of the free Lévy measure. The monotonicity property strengthens the result in Hasebe et al. [Int. Math. Res. Not. (2019)] that the normal distribution is freely selfdecomposable.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":"31 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the free Lévy measure of the normal distribution\",\"authors\":\"Takahiro Hasebe, Yuki Ueda\",\"doi\":\"10.1214/23-ejp1035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Belinschi et al. [Adv. Math., 226 (2011)] proved that the normal distribution is freely infinitely divisible. This paper establishes a certain monotonicity, real analyticity and asymptotic behavior of the density of the free Lévy measure. The monotonicity property strengthens the result in Hasebe et al. [Int. Math. Res. Not. (2019)] that the normal distribution is freely selfdecomposable.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp1035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejp1035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Belinschi等人。[j], 226(2011)]证明了正态分布是自由无限可分的。本文建立了自由lsamvy测度的密度具有一定的单调性、实解析性和渐近性。单调性增强了Hasebe等人的结果。数学。研究》。(2019)]正态分布是自由自分解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the free Lévy measure of the normal distribution
Belinschi et al. [Adv. Math., 226 (2011)] proved that the normal distribution is freely infinitely divisible. This paper establishes a certain monotonicity, real analyticity and asymptotic behavior of the density of the free Lévy measure. The monotonicity property strengthens the result in Hasebe et al. [Int. Math. Res. Not. (2019)] that the normal distribution is freely selfdecomposable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信