超声合成ZnO-TiO2纳米复合材料与常规方法降解亚甲基蓝染料的比较研究

IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED
{"title":"超声合成ZnO-TiO2纳米复合材料与常规方法降解亚甲基蓝染料的比较研究","authors":"","doi":"10.56042/ijct.v30i5.5200","DOIUrl":null,"url":null,"abstract":"ZnO-TiO2 nanocomposites (ZTN) have been synthesized using both ultrasound-assisted and conventional methods. The characterization techniques like XRD, FTIR, BET, FESEM, EDS, and UV-visible confirmed that the ZTN is successfully formed. The photocatalytic activity and kinetics of the ZTN are assessed using methylene blue (MB) dye as a pollutant. Various factors such as synthesis processes, catalyst loading, initial dye concentration, temperature, and pH have been investigated to determine their impact on dye degradation. The ZTN synthesized with ultrasound exhibited superior photocatalytic activity compared to the conventionally synthesized ZTN. The highest dye degradation (97.69%) was observed under the optimum conditions of 1 g/L photocatalyst dosage, 20 ppm dye concentration, pH 10, and a temperature of 55℃. Additionally, the kinetic study revealed that the degradation of the dye by ZTN followed a second-order kinetic model.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"57 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of ZnO-TiO2 nanocomposites synthesized by ultrasound and conventional methods for the degradation of methylene blue dye\",\"authors\":\"\",\"doi\":\"10.56042/ijct.v30i5.5200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ZnO-TiO2 nanocomposites (ZTN) have been synthesized using both ultrasound-assisted and conventional methods. The characterization techniques like XRD, FTIR, BET, FESEM, EDS, and UV-visible confirmed that the ZTN is successfully formed. The photocatalytic activity and kinetics of the ZTN are assessed using methylene blue (MB) dye as a pollutant. Various factors such as synthesis processes, catalyst loading, initial dye concentration, temperature, and pH have been investigated to determine their impact on dye degradation. The ZTN synthesized with ultrasound exhibited superior photocatalytic activity compared to the conventionally synthesized ZTN. The highest dye degradation (97.69%) was observed under the optimum conditions of 1 g/L photocatalyst dosage, 20 ppm dye concentration, pH 10, and a temperature of 55℃. Additionally, the kinetic study revealed that the degradation of the dye by ZTN followed a second-order kinetic model.\",\"PeriodicalId\":13388,\"journal\":{\"name\":\"Indian Journal of Chemical Technology\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijct.v30i5.5200\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijct.v30i5.5200","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用超声辅助和常规方法合成了ZnO-TiO2纳米复合材料(ZTN)。XRD、FTIR、BET、FESEM、EDS、uv -可见等表征技术证实了ZTN的成功形成。以亚甲基蓝(MB)染料为污染物,考察了ZTN的光催化活性和动力学。研究了各种因素,如合成工艺、催化剂负载、染料初始浓度、温度和pH,以确定它们对染料降解的影响。与常规合成的ZTN相比,超声合成的ZTN具有更好的光催化活性。在光催化剂用量为1 g/L、染料浓度为20 ppm、pH为10、温度为55℃的条件下,染料降解率最高,达到97.69%。此外,动力学研究表明,ZTN对染料的降解符合二级动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of ZnO-TiO2 nanocomposites synthesized by ultrasound and conventional methods for the degradation of methylene blue dye
ZnO-TiO2 nanocomposites (ZTN) have been synthesized using both ultrasound-assisted and conventional methods. The characterization techniques like XRD, FTIR, BET, FESEM, EDS, and UV-visible confirmed that the ZTN is successfully formed. The photocatalytic activity and kinetics of the ZTN are assessed using methylene blue (MB) dye as a pollutant. Various factors such as synthesis processes, catalyst loading, initial dye concentration, temperature, and pH have been investigated to determine their impact on dye degradation. The ZTN synthesized with ultrasound exhibited superior photocatalytic activity compared to the conventionally synthesized ZTN. The highest dye degradation (97.69%) was observed under the optimum conditions of 1 g/L photocatalyst dosage, 20 ppm dye concentration, pH 10, and a temperature of 55℃. Additionally, the kinetic study revealed that the degradation of the dye by ZTN followed a second-order kinetic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Chemical Technology
Indian Journal of Chemical Technology 工程技术-工程:化工
CiteScore
0.90
自引率
20.00%
发文量
17
审稿时长
6-12 weeks
期刊介绍: Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信